ICBO: International Conference on Biomedical Ontology
July 28-30, 2011 - Buffalo, NY, USA

Developing an Application Ontology for
Biomedical Resource Annotation and Retrieval:
Challenges and Lessons Learned

Carlo Torniail, Matthew Brush!, Nicole Vasilevsky !, Erik Segerdell?,
Melanie Wilsonl, Tenille Johnson?, Karen Corday?, Chris Shaffer!, Melissa Haendel!

10regon Health & Science University, Portland, OR, USA
2Harvard Medical School, Boston, MA, USA

Abstract. The eagle-i project has been developing a semantic search portal for biomedical
research resources. A unique feature of eagle-i is that the data collection and search tools
are completely driven by ontologies. This has been a source of challenges and opportunities
regarding use of biomedical ontologies in real-world applications. In this paper, we address
our approach and lessons learned for balancing practical project requirements for design
and implementation of an ontology driven application, with a desire to conform to best
practices for biomedical ontology development.
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1 Introduction

An important challenge in biomedical research
is the ability to find relevant scientific resources
such as reagents, instruments, and protocols,
thereby reducing time-consuming and expensive
duplication of resource development. For
resources that are publicly available, informa-
tion connecting them to relevant organisms,
genotypes, genes, site of action, and other key
biological search facets is frequently not
available within public databases or from
company catalogs. Furthermore, there exist
numerous resources that are not published in
journals or listed on websites. The eagle-i
Consortium (www.eagle-i.org’/home) aims to
help researchers find biomedical research
resources. The goal of eagle-i is to collect data
about these “invisible” resources from the labs
that use them, and make this information
available through a semantic search portal.
eagle-1 also aims to be interoperable with and
contribute to similar ontology-based efforts to
represent publicly available research resources
in repositories such as the Neuroscience
Information Framework (NIF) [1] and the
Resource Discovery System (RDS) [2]. These
efforts have the main benefit of allowing linkage
to very many data sets for gene function,
expression, phenotypes, biological pathways, etc.
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Use of interoperable ontologies will enable
understanding of the experimental context in
which these data are collected, and support new
hypothesis generation.

The architecture of the eagle-i system
includes four main components: institutional
triple-store repositories; a federated network; a
data collection tool, and a central search appli-
cation. In order to support semantic retrieval of
resource data, the underlying data model is
based on a modular set of ontologies. A unique
feature of the project is that the user interface
and logic of both the data collection and search
tools are driven by ontologies, allowing these
applications to seamlessly change in response to
data-driven ontology enhancements [3]. In this
paper, we present our approach and lessons
learned in the process of developing the eagle-i
ontology modules in compliance with project
requirements, best practices for biomedical
ontology development, and interoperability with
other ontology-based resource systems and
community ontologies.

2 Modeling Approach

Our modeling approach had three main drivers.
The first was to represent real data collected
about resources. The second was to have the
ontology control the user-interface (UI) and the

Open access article distributed under the terms of the Creative Commons Attribution License 3.0, which permits
unrestricted use, distribution, and reproduction, provided the original work is properly cited.



logic of the data collection tool and search
application. The third was a commitment to
build a set of ontologies that could be reusable
and interoperable with other ontologies and
existing efforts for representing biomedical
entities. This latter requirement translated into
decisions to a) follow OBO Foundry [4]
principles and best practices for biomedical
ontology development and b) engage in active
discussions within the bio-ontology community
in order to provide context for eagle-i
interoperability and align with domain-wide
standards for resource representation
(http://bit.ly/rrcoord).

We began our modeling effort by collecting a
preliminary set of data with the goal of
identifying key properties for each resource type
collected by eagle-i. These include reagents,
instruments, services, model and non-model
organisms, protocols, biospecimens, human
studies, and research opportunities. We then
asked the eagle-i team to identify a set of
queries relevant to each of these resources. For
example, “Which laboratories in the United
States are equipped with high-resolution
ultrasound machines for brachial artery
reactivity testing (BART)?” or “Find in situ
hybridization  protocols for  whole-mount
preparations of Aplysia.” Over 300 queries were
generated and analyzed to first identify their
relevance and semantic linkage, and then to
specify the relations required to answer these
queries. Using the preliminary data and the
analysis of the queries, we defined a preliminary
high-level data model. Next we identified a set
of classes and properties from existent
biomedical ontologies that could be reused to
implement this model, as well as those that had
to be created de novo. Based on data and
functional requirements gathered throughout
the project, we expanded on this initial ontology
in an iterative approach that involved
collaboration with NIF, RDS, Ontology for
Biomedical Investigation (OBI) [5], and VIVO

Application-specific modules

! [ Ul Annotation Definition Ul Annotations
eagle-i-app-def.owl eagle-i.app.owl!

[6]. Adherence to our three drivers presented
interesting challenges and trade-offs when it
came to implementation, which is discussed in
the next section.

3 Implementation

3.1 Ontology Reuse and
Development Practices

We implemented the eagle-i ontology modules in
the Web Ontology Language (OWL) [7] to
comply with the de facto standard for ontology
representation and to exploit its reasoning
capabilities. Upon analysis of existing ontologies,
we came to the conclusion that those showing
the most promising high-level classes and
design principles for resource representation
belonged primarily to the OBO Foundry
constellation. Because of our choice to reuse
portions of certain OBO ontologies (OBI [5],
Uberon (http://bit.ly/ubernat), the Gene Ontology
(GO; http://[www.geneontology.org), the Software
Ontology (SWO; http:/www.ebi.ac.uk/efo/swo),
the NIF Standard Ontology (NIFstd),
Biomedical Resource Ontology (BRO) [2], etc.),
we chose to follow several key OBO Foundry
principles for ontology development and reuse.
These included:

(a) Adoption of the Basic Formal Ontology
(BFO) [8] as upper level ontology and the
Information Artifact Ontology (IAO) [9] for
representing ontology metadata.

(b) Use of the Relation Ontology (RO) [10] for
basic properties.

(¢) Adherence to the Minimum Information to
Reference an External Ontology Term
(MIREOT) [11] principle to reference terms
and axioms already defined in other
ontologies. MIREOT is a standard whereby
a subset of classes and related axioms can
be referenced from an ontology, without
importing the whole source ontology.

2 MIREOT files

T
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Figure 1. The eagle-i layered, modular ontology structure.
The core module imports BFO, IAO, and RO in their entirety, as well as files containing portions of external ontologies (MIREOT; shown
are portions of OBI, Ontology of Clinical Research (OCRe), and the NCBI taxonomy). The application-specific modules define properties,
instance values for annotation properties, and property and class annotations used by the eagle-i applications.
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Figure 2. Research resources represented in eagle-i.
The classes from external ontologies referenced through MIREQT are as follows: 507 from OBI, 182 from NCBI Taxon, 53 from

SWO, 20 from VIVO, 19 from OCRe, 13 from BRO.

3.2 Layered eagle-i Ontology Modules

We used an approach in which the
representation of research resource data is
decoupled from the representation of
application-specific data used to control the
appearance and behavior of the tooling UL
The result is a collection of ontology modules
that are encoded and maintained separately,
but assemble into a single ontology to support
the eagle-1 data collection tool and search
application (Fig. 1).

The eagle-i core Ontology. The eagle-i core
module contains classes and properties used
to represent, logically define, and retrieve
biomedical research resources (Fig. 2). The
eagle-1 core has its own unique namespace
identifier (ERO) as required by the OBO
Foundry. The eagle-i core module imports some
external ontologies in their entirety, as well as
a set of files containing individual classes and
properties collected from external ontologies
using MIREOT (Fig. 2). As of April 2011, the
eagle-i core module contains 1059 ERO classes
(excluding classes imported directly or referenced
with MIREOT), 56 object properties, and 59
data properties. The current version of the
core ontology under development is available
at http://bit.ly/eagle-i-onto.

The application-specific modules drive
application functionality. The eagle-i
application-specific modules contain all the
properties and classes required to drive the
Uls of the data collection tool and the search
application. These are primarily annotation
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properties that tell the data and search tools
how to display and interact with the ontology
classes and properties to which they are
attached.

The basic design principle is to define a
set of annotation properties and possible
instance values for these properties in a ‘Ul
Annotation Definition file’ (eagle-i-app-def.owl).
For example, the ‘inClassGroup’ and
‘inPropertyGroup’ annotation properties are
used to tag specific classes and properties,
respectively, as exhibiting certain application-
related features or behavior. Table 1 shows
some of the possible instance values for the
‘inClassGroup’ and ‘inPropertyGroup’ properties,
Table 2 describes additional properties
defined in the UI Annotation Definition file,
and Fig. 4 illustrates how they control various
aspects of the data collection tool UI. A
second module, the ‘Ul Annotations file’
(eagle-i-app.owl), holds the actual annotations
made on core eagle-1 classes and properties
using these annotation values. These two
application-specific modules have a different
namespace than the core ontology, and class
and property URIs are not numerical since
they are not meant to be shared or reused.

I Throughout this text, italics are used to indicate a
term denoting an ontology class, instance or
property.
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Instance Label Description

Example

resource

referenced class
drop down menus in the Ul

data model exclude

primary property

page
embedded class

Denotes classes for which instances are collected

Denotes non resource classes that are used to populate

Denotes classes or properties that are not included in the
model used for the data tool or the search tool Uls

Denotes properties that will appear grouped in the first
block of properties in the data tool and in the search result

Denotes a class for which instances can only be created in

the context of an embedding class

related lab Denotes the properties that relate a resource to a
laboratory
admin data Denotes classes or properties that are never displayed in

the search results

‘instrument’, ‘biospecimen’,
‘protocol’

‘technique’, ‘disease’

BFO classes such ‘continuant’ or
‘occurrent’ or RO relations such
‘precedes’ or ‘is about’

service restrictions and fees,
resource description.

‘antibody immunogen’ created
within ‘antibody’, ‘construct insert’
created within ‘plasmid’

‘service provided by’, ‘located in’

personal email, facilities address,
last name and first name of facility
contact persons

Table 1. Sample values for inPropertyGroup and inClassGroup properties.

Property Label Description

Example

Property Type

Defines the value of preferred label to
display in the data collection tool and
search Uls

eagle-i preferred
label

Defines the value of preferred definition
to be displayed in the data collection
tool and search Uls

eagle-i preferred
definition

Used to specify the domain of an
imported property. Each annotation will
contain the URI of one class.

eagle-i domain
constraint

eagle-i range
constraint property. Each annotation will contain

the URI of one class.

Used to specify the range of an imported

Capitalized ‘Organization’ for

Annotation Property

OBI_0000245 (‘organization’)

For OBI_0000245 (‘organization’):"An

Annotation Property

entity that can play roles, has
participants, and has a set of
organizational rules. ...."

Value set to “OBI_0000245"

Data Property

(‘organization’) for RO property
‘location_of’

Value set to “ERO_0000004"

Data Property

(‘instrument’) for RO property
‘located_in’

Table 2. Additional properties defined in the Ul Annotation Definition file.

The UI Annotations file has also been used
to import external referenced classes that are
used to populate drop-down menus in the data
collection tool, such as MeSH terms for
diseases. This file also contains shortcut
relations between classes that in the core
ontology are expressed using a more complex
concatenation of properties to maintain full
logical computability. For example, from an
application standpoint we need to have a single
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property that relates a service to a core
laboratory providing that service. OBI uses a
composed relation built from two properties to
make this association between an organization
and a service it provides (‘organization’
‘bearer_of’ some ‘service provider role’ and
‘realized_by’ some  ‘service’). The Ul
Annotations file replaces this complex
statement with a single property linking a
service to 1its provider (‘service provider
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‘provides_service’ some ‘service’) where ‘service
provider’ is defined as follows: [(‘organization’
or ‘Homo sapiens’) and (‘bearer_of” some ‘service
provider role’)]. This need to simplify complex
relation chains will be a common issue in using
ontologies for data collection applications, and
approaches like the ones suggested in [12]
should be exploited.

4 Discussion

In this section we discuss implementation
choices and lessons learned from our effort to
build an ontology that fulfills standards for
interoperability and reuse and  also
requirements imposed by the UI and logic for
the applications. The application ontology
developed enables the annotation of eagle-i
resources at the level of granularity and
semantic complexity required for answering
the queries in our use cases.

4.1 Use of Best Practices for Biomedical
Ontologies Development

Upper ontology. We used BFO in our
implementation. Use of an upper ontology can
facilitate the design and modeling process, and
ease the reuse of existent ontologies based on
the same upper ontology. Issues can arise,
however, when driving application interfaces
directly from BFO-constructed ontologies. For
example, our end users don’t want to see BFO
classes such as ‘continuant’, ‘occurrent or
‘processual entity’ in the Ul Accordingly, we
used a ‘Data Model Exclude annotation
property to mask these BFO classes from
appearing in the Ul (See Table 1). While simple
to implement, this solution requires the
additional effort to create and maintain the
annotations and to implement procedures and
tools that can use them programmatically.
Another challenge was the fact that the
domain and/or range of most RO properties are
BFO classes. For instance, the RO property
‘located_in’ has ‘continuant’ as both its domain
and range. We wanted to reuse RO properties,
and at the same time present users with
application-specific choices when filling values
of properties in the eagle-i data collection tool,
without forcing them to traverse all the sub-
trees under ‘continuant’. To achieve this, we
used annotation properties to “restrict” the
domain and range of those properties for use
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within the data collection tool (see ‘eagle-i
domain  restriction’ and ‘eagle-i  range
restriction’ examples in Table 2). Finally,
because we used properties to define the data
fields that are shown for each resource type in
the data collection tool UI, we had to exclude
from the model those properties that were
inherited from upper ontology classes. For
example, ‘transformation_of’ is inherited by all
subclasses of ‘continuant’, but it was not
appropriate to display this field in our UI for

most continuants, such as ‘laboratory’ or
‘instrument’.
Reusing existing ontologies and

vocabularies. As described in Section 3 we
have extensively used the MIREOT principle to
reuse terms from external ontologies. One of
the drawbacks we have found in applying
MIREOT is related to the overhead of
implementation efforts (creating, maintaining
and running scripts to synchronize terms) and
the lack of well-defined standards for custom
axioms imports. Tools like OntoFox [13] or
OWL Module Extractor? are helpful, but an
ideal solution would be to integrate these tools
within an ontology editor such as Protégés.

Due to its wide usage for indexing related
publications, we opted to import portions of
MeSH to reference diseases. Development of
best practices and better availability of
standardized URIs for commonly used non-
ontology based controlled vocabularies would
enable better interoperability and reuse.

4.2 Layered eagle-i Ontology Modules

Our approach of decoupling application-specific
from general purpose content through layered
ontology modules has proved an effective
means to drive an application UI while
maintaining interoperability with external
ontologies and data sources. Logically we
wanted to separate our core ontology from the
application-specific ontologies and therefore
identify what was relevant to share with the
community from what was specific to the needs
of eagle-i. These layered modules also
facilitated parallel development in a shared
repository, as ontologists familiar with OWL
constructs and functionality could manage

2 http://owl.cs.manchester.ac.uk/modularity/
3 protege.stanford.edu
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eagle-1 core development, while curators were
able to concurrently add proper annotation
values in the Ul annotations file.

We have identified a set of requirements
for designing modular ontologies that can
bridge the gap between an application and
domain-specific ontologies. These include: (a)
application-specific labels and definitions; (b)
exclusion of sets of classes and properties from
the model used by the application; (c)
restriction of domain and range for some

imported properties; (d) definition of display
order of object and data properties at class
level. Figure 4 illustrates several of these
features in the context of the eagle-1 data
annotation tool. Despite the effectiveness of
this approach, it requires significant effort to
keep the annotations current when the core
module changes, and presents the risk of
excessive proliferation of annotation properties
and their instance values in attempts to
simplify application coding complexity.
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Insert Size +
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Figure 4. The eagle-i data collection tool user interface.

Shown is an example of a ‘plasmid’ record annotated using the eagle-i ontology. (1) eagle-i classes annotated with the “resource
root” value are displayed in the left bar menu. (2) The value of ‘eagle-i preferred definition’ is used for tooltips that appear while
hovering over the property labels. (3) The ‘eagle-i preferred label’ is used for the display name of property. Here, the imported RO
‘location_of’ has been renamed ‘Location’. This property is also flagged as a primary property using the ‘inPropertyGroup’
annotation property, as are ‘Additional Name’, ‘Description’ and ‘Contact Person’ properties. This flag results in presentation at the
top of the property list for a record. (4) Users can select a technique associated with the reagent. In the ontology, the ‘technique’
class is annotated as a ‘referenced class’ which tells the Ul to allow reference to an ontology term but create no instances. (5)
Construct insert is an example of a resource annotated as an ‘embedded class’, which has to be created in the context of a construct

or plasmid of which they are a part.
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4.3 Coordination with the Biomedical
Ontology Community

One of the most interesting aspects of the
eagle-1 “experiment” has been our commitment
to collaboration with similar efforts aimed at
resource modeling, data collection, and
ontology development. We aligned our ontology
with the NIF, VIVO, and RDS by reusing
common terms and definitions, with the goal of
migrating to usage of the same ontology classes
and URIs at a later date. In doing so we have
contributed to the design and enriched the
content of existing biomedical ontologies — most
notably OBI, where we contributed design
patterns for services and added classes for
devices, functions, and techniques. Finally, we
developed ontological models for several
important domains where the available
ontologies are insufficient or non-existent, such
as reagents, biospecimens, and genotype
representation.

While the biomedical ontology community
may benefit from these collaborations, it is
clear that coordinated development practices
require additional work for those involved in
building or wusing ontologies to drive
applications. It is not always straightforward to
implement a consistent design within an
application ontology that aligns and
interoperates with external reference
ontologies. For instance, eagle-1 consulted with
the OBI and NIF developer communities when
modeling research-related services to ensure
use of common principles and design patterns.
However, the model that resulted, which
classified services based on their input and
output (e.g. data vs. a material entity), was not
suitable for eagle-1 users who preferred a
hierarchy classified according to the process
performed by the service (i.e. analysis,
production, storage, etc). To accommodate both
the broader biomedical ontology community
and the eagle-1 users, we implemented one
service hierarchy in OBI, and then wuse
MIREOT to reference individual service classes
back into eagle-i and restructured them into a
hierarchy that suited the needs of our
application end-users.

It is preferable to maintain orthogonality of
ontologies by having a single “home” for a
particular kind of entity (like device in OBI or
chemical reagent in CheBI) [4]. However, this
goal requires substantial dedication because
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one first models in the application ontology

where implementation can meet project
requirements  immediately. Next, term
requests and/or modeling within an

appropriate (reference) ontology are made, but
this often takes a significant amount of time to
coordinate agreement. Finally, the original
model is obsoleted in the application ontology
and classes from the reference ontology are
referred using MIREOT. Additional effort is
also required to keep terms synchronized.

The process of developing the eagle-i
ontology modules has highlighted the need for
effective automated mechanisms for extracting
customized subsets of terms from reference
ontologies. Such ‘customizable community
views’ or ‘slims’ can be tailored to meet the
needs of diverse communities or applications,
and can minimize the effort involved in reusing
existent ontologies [14]. Customized views can
be extracted with different level of complexity
(from referencing single terms through
MIREOT, to importing a ‘refactored’ class
hierarchy for a particular branch, or set of
axioms to guarantee reasoning capabilities for
a particular subset selected). This mechanism
could also be used within an application
ontology to provide a similar but more flexible
implementation of our layered approach.

5 Conclusions

The process of developing an ontology-driven
application has been an important benchmark
for usage of biomedical ontologies and their
driving design principles and tools. We have
designed a layered set of modular ontologies,
consisting of a broadly applicable core ontology
and an application-specific ontology. This has
allowed the identification of requirements and
principles to inform a general design pattern
for building applications that rely on ontologies
for their logic and user interface.

We have identified a clear need to develop
mechanisms, best practices and tools to bridge
the gap between reference and application
ontology development and usage. Future efforts
will be aimed at refining and documenting
these requirements, sharing our lessons
learned, and engaging in efforts addressing the
issues that the current biomedical ontology
community is facing when dealing with real-
world applications.
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