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Abstract. At Eurocrypt ’96, Coppersmith proposed an algorithm for
finding small roots of bivariate integer polynomial equations, based on
lattice reduction techniques. But the approach is difficult to understand.
In this paper, we present a much simpler algorithm for solving the same
problem. Our simplification is analogous to the simplification brought by
Howgrave-Graham to Coppersmith’s algorithm for finding small roots
of univariate modular polynomial equations. As an application, we illus-
trate the new algorithm with the problem of finding the factors of n = pq
if we are given the high order 1/4 log

2
n bits of p.

1 Introduction

An important application of lattice reduction found by Coppersmith in 1996
is finding small roots of low-degree polynomial equations [3–5]. This includes
modular univariate polynomial equations, and bivariate integer equations.

The problem of solving univariate polynomial equations modulo an integer
N of unknown factorization seems to be hard, as for some polynomials it is
equivalent to the knowledge of the factorization of N . Moreover, the problem of
inverting RSA, i.e. extracting e-th root modulo N , is a particular case of this
problem. However, at Eurocrypt ’96, Coppersmith showed that the problem of
finding small roots is easy [3, 5], using the LLL lattice reduction algorithm [9]:

Theorem 1 (Coppersmith). Given a monic polynomial P (x) of degree δ,
modulo an integer N of unknown factorization, one can find in time polyno-

mial in (log N, 2δ) all integers x0 such that P (x0) = 0 mod N and |x0| ≤ N1/δ.

The algorithm can be extended to handle multivariate modular polynomial
equations, but the extension is heuristic only. Coppersmith’s algorithm has many
applications in cryptography: cryptanalysis of RSA with small public exponent
when some part of the message is known [5], cryptanalysis of RSA with private
exponent d smaller than N0.29 [1], polynomial-time factorization of N = prq for
large r [2], and even an improved security proof for OAEP with small public
exponent [13] (see [12] for a nice survey).

Coppersmith’s algorithm for solving univariate modular polynomial equa-
tions was further simplified by Howgrave-Graham in [7]. Apart from being sim-
pler to understand and implement, a significant advantage of Howgrave-Graham’s



approach is the heuristic extension to multivariate modular polynomial: indeed,
depending on the shape of the polynomial, there is much flexibility in selecting
the parameters of the algorithm, and Howgrave-Graham’s approach enables to
easily derive the corresponding bound for the roots. This approach is actually
used in all previously cited variants of Coppersmith’s technique [1, 2].

Similarly, the problem of solving bivariate integer polynomial equations seems
to be hard. Letting p(x, y) be a polynomial in two variables with integer coeffi-
cients,

p(x, y) =
∑

i,j

pi,j · xiyj

it consists in finding all integer pairs (x0, y0) such that p(x0, y0) = 0. We see that
integer factorization is a special case as one can take p(x, y) = N−x·y. However,
at Eurocrypt ’96, Coppersmith showed [4, 5] that using LLL, the problem of
finding small roots of bivariate polynomial equations is easy:

Theorem 2. Let p(x, y) be an irreducible polynomial in two variables over Z,

of maximum degree δ in each variable separately. Let X and Y be upper bounds

on the desired integer solution (x0, y0), and let W = maxi,j |pij |X iY j . If XY <
W 2/(3δ), then in time polynomial in (log W, 2δ), one can find all integer pairs

(x0, y0) such that p(x0, y0) = 0, |x0| ≤ X, and |y0| ≤ Y .

Moreover, there can be improved bounds depending on the shape of the poly-
nomial p(x, y). For example, for a polynomial p(x, y) of total degree δ in x and
y, the bound is XY < W 1/δ . As for the univariate modular case, the technique
can be heuristically extended to more than two variables. An application of
Coppersmith’s algorithm for the bivariate integer polynomial case is to factor in
polynomial-time an RSA-modulus n = pq such that half of the least significant
or most significants bits of p are known [5].

However, as noted in [6], the approach for the bivariate integer case is rather
difficult to understand. This means that the algorithm is difficult to implement in
practice, and that improved bounds depending on the shape of the polynomial
are more difficult to derive. In particular, what makes the analysis harder is
that one has to derive the determinant of lattices which are not full rank. The
particular case of factoring n = pq when half of the least significant or most
significants bits of p are known, was further simplified by Howgrave-Graham in
[7], but as noted in [6], this particular simplification does not seem to extend
to the general case of bivariate polynomial equations. As suggested in [12], a
simplification analogue to what has been obtained by Howgrave-Graham for the
univariate modular case would be useful.

In this paper, we present a simple and efficient algorithm for finding small
roots of bivariate integer polynomials. Our simplification is analogous to the
simplification obtained by Howgrave-Graham for the univariate modular case.
We apply lattice reduction to a full rank lattice that admits a natural triangular
basis. It is then straightforward to derive the determinant and improved bounds
depending on the shape of the polynomial; the heuristic extension to more than



two variables is also simpler. However, our algorithm is slightly less efficient
than Coppersmith’s algorithm, because our algorithm has a polynomial-time
complexity only if XY < W 2/3δ−ε for any fixed ε > 0, whereas Coppersmith’s
algorithm requires XY < W 2/3δ, a slightly weaker condition. In section 7, we
illustrate our algorithm with the problem of finding the factors of n = pq if we
are given the high order 1/4 log2 n bits of p, and show that our algorithm is
rather efficient in practice.

2 Solving Bivariate Integer Equations: an Illustration

In this section, we first illustrate our technique with a bivariate integer polyno-
mial of the form

p(x, y) = a + bx + cy + dxy,

with a 6= 0 and d 6= 0. We assume that p(x, y) is irreducible and has a small
root (x0, y0). Our goal is to recover (x0, y0). As in theorem 2, we let X, Y be
some bound on x0, y0, that is we have |x0| ≤ X and |y0| ≤ Y , and let W =
max{|a|, |b|X, |c|Y, |d|XY }. Moreover, given a polynomial h(x, y) =

∑

i,j hijx
iyj ,

we define ‖h(x, y)‖2 :=
∑

i,j |hij |2 and ‖h(x, y)‖∞ := maxi,j |hij |. Note that we
have:

W = ‖p(xX, yY )‖∞ (1)

First, we generate an integer n such that :

W ≤ n < 2 · W (2)

and gcd(n, a) = 1. One can take n = W + ((1 − W ) mod |a|). Then we define
the polynomial:

q00(x, y) = a−1p(x, y) mod n

= 1 + b′x + c′y + d′xy

We also consider the polynomials q10(x, y) = nx, q01(x, y) = ny and q11(x, y) =
nxy. Note that for all four polynomials qij(x, y), we have that qij(x0, y0) = 0
mod n.

We consider the four polynomials q̃ij(x, y) = qij(xX, yY ); we are interested
in finding a small linear integer combination of the polynomials q̃ij(x, y). There-
fore, we consider the lattice generated by all linear integer combinations of the
coefficient vectors of the q̃ij(x, y). A basis of the lattice is given by the following
matrix L of row vectors:

L =









1 b′X c′Y d′XY
nX

nY
nXY









We know that the LLL algorithm [9], given a lattice spanned by (u1, . . . , uω),
finds in polynomial time a lattice vector b1 such that ‖b1‖ ≤ 2(ω−1)/4 det(L)1/ω.



More background on lattice reduction techniques will be given in the next sec-
tion. With ω = 4 and det L = n3(XY )2 we obtain in polynomial time a non-zero
polynomial h(x, y) such that

‖h(xX, yY )‖ ≤ 2 · n3/4(XY )1/2 (3)

Note that we have h(x0, y0) = 0 mod n. The following lemma, due to Howgrave-
Graham, shows that if the coefficients of h(x, y) are sufficiently small, then the
equality h(x0, y0) = 0 holds not only modulo n, but also over Z.

Lemma 1 (Howgrave-Graham). Let h(x, y) ∈ Z[x, y] which is a sum of at

most ω monomials. Suppose that h(x0, y0) = 0 mod n where |x0| ≤ X and

|y0| ≤ Y and ‖h(xX, yY )‖ < n/
√

ω. Then h(x0, y0) = 0 holds over the integers.

Proof. We have:

|h(x0, y0)| =
∣
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∣
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ω‖h(xX, yY )‖ < n

Since h(x0, y0) = 0 mod n, this gives h(x0, y0) = 0. ut

Assume now that:
XY < n1/2/16 (4)

Then inequality (3) gives:

‖h(xX, yY )‖ < n/2 (5)

which implies that h(x0, y0) = 0. Moreover, from (1), (2) and (5) we get:

‖h(xX, yY )‖ < n/2 < W ≤ ‖p(xX, yY )‖∞ ≤ ‖p(xX, yY )‖

This shows that h(x, y) cannot be a multiple of p(x, y). Namely, if h(x, y) is
a multiple of p(x, y), then it follows from the definition of p and h that we
must have h(x, y) = λ · p(x, y) with λ ∈ Z

∗. This would give ‖h(xX, yY )‖ =
|λ| · ‖p(xX, yY )‖ ≥ ‖p(xX, yY )‖, a contradiction.

Eventually, since p(x, y) is irreducible and h(x, y) is not a multiple of p(x, y),

Q(x) = Resultanty(h(x, y), p(x, y))

gives a non-zero integer polynomial such that Q(x0) = 0. Using any standard
root-finding algorithm, we can recover x0, and finally y0 by solving p(x0, y) = 0.
Using inequality (4) and n ≥ W , this shows that if :

XY <
W 1/2

16



one can find in time polynomial in log W all integer pairs (x0, y0) such that
p(x0, y0) = 0, |x0| ≤ X , and |y0| ≤ Y .

This bound is weaker than the bound XY < W 2/3 given by theorem 2 for
δ = 1. We will see in section 4 that by adding more multiples of p(x, y) into the
lattice, we recover the desired bound.

3 Background on Lattices and Polynomials

3.1 The LLL Algorithm

Let u1, . . . , uω ∈ Z
n be linearly independent vectors with ω ≤ n. The lattice

L spanned by < u1, . . . , uω > consists of all integral linear combinations of
u1, . . . , uω, that is:

L =
{

ω
∑

i=1

ni · ui| ni ∈ Z
}

Such a set of vectors ui’s is called a lattice basis. All the bases have the same
number of elements, called the dimension or rank of the lattice. We say that the
lattice is full rank if ω = n. Any two bases of the same lattice L are related by
some integral matrix of determinant ±1. Therefore, all the bases have the same
Gramian determinant det1≤i,j≤d < ui, uj >. One defines the determinant of the
lattice as the square root of the Gramian determinant. If the lattice is full rank,
then the determinant of L is equal to the absolute value of the determinant of
the ω × ω matrix whose rows are the basis vectors u1, . . . , uω.

The LLL algorithm [9] computes a short vector in a lattice :

Theorem 3 (LLL). Let L be a lattice spanned by (u1, . . . , uω). The LLL algo-

rithm, given (u1, . . . , uω), finds in polynomial time a vector b1 such that:

‖b1‖ ≤ 2(ω−1)/4 det(L)1/ω

3.2 Bound on the Factors of Polynomials

We use the following notation: given a polynomial h(x) =
∑

i hix
i, we define

‖h‖2 :=
∑

i |hi|2 and ‖h‖∞ := maxi |hi|. We use the same notations for bivariate
polynomials, as defined in section 2. The following two lemmata will be useful
in the next section:

Lemma 2. Let a(x, y) and b(x, y) be two non-zero polynomials over Z of maxi-

mum degree d separately in x and y, such that b(x, y) is a multiple of a(x, y) in

Z[x, y]. Then:

‖b‖ ≥ 2−(d+1)2 · ‖a‖∞



Proof. The proof is based on the following result of Mignotte [11]: let f(x) and
g(x) be two non-zero polynomials over the integers, such that deg f ≤ k and f
divides g in Z[X ]; then :

‖g‖ ≥ 2−k · ‖f‖∞
Let f(x) = a(x, xd+1). Then we have deg f ≤ (d+1)2 and the polynomials a(x, y)
and f(x) have the same list of non-zero coefficients, which gives ‖f‖∞ = ‖a‖∞.
Similarly, letting g(x) = b(x, xd+1), we have ‖g‖ = ‖b‖. Moreover f(x) divides
g(x) in Z[x]. Using the previous result of Mignotte, this proves lemma 2. ut

Lemma 3. Let a(x, y) and b(x, y) be as in lemma 2. Assume that a(0, 0) 6= 0
and b(x, y) is divisible by a non-zero integer r such that gcd(r, a(0, 0)) = 1. Then

b(x, y) is divisible by r · a(x, y) and:

‖b‖ ≥ 2−(d+1)2 · |r| · ‖a‖∞

Proof. Let λ(x, y) be the polynomial such that a(x, y) · λ(x, y) = b(x, y). We
show that r divides λ(x, y). Assume that this is not the case, and let λij be
a coefficient of xiyj in λ(x, y) not divisible by r. Take the smallest (i, j) for
the lexicographic ordering. Then we have that bij = λij · a(0, 0) mod r, where
bij is the coefficient of xiyj in b(x, y). Since a(0, 0) is invertible modulo r and
bij = 0 mod r, this gives a contradiction. This shows that r · a(x, y) divides
b(x, y). Applying the previous lemma to r · a(x, y) and b(x, y), this terminates
the proof. ut

4 Finding Small Roots of Bivariate Integer Polynomials

We prove the following theorem:

Theorem 4. Let p(x, y) be an irreducible polynomial in two variables over Z, of

maximum degree δ in each variable separately. Let X and Y be upper bounds on

the desired integer solution (x0, y0), and let W = maxi,j |pij |X iY j . If for some

ε > 0,
XY < W 2/(3δ)−ε (6)

then in time polynomial in (log W, 2δ), one can find all integer pairs (x0, y0) such

that p(x0, y0) = 0, |x0| ≤ X, and |y0| ≤ Y .

Proof. We write:

p(x, y) =
∑

0≤i,j≤δ

pijx
iyj

and let (x0, y0) be an integer root of p(x, y). As previously we let

W = ‖p(xX, yY )‖∞

First we assume that p00 6= 0 and gcd(p00, XY ) = 1. We will see in appendix A
how to handle the general case.



We select an integer k ≥ 0 and let ω = (δ + k + 1)2. We generate an integer
u such that

√
ω · 2−ω · W ≤ u < 2W and gcd(p00, u) = 1. As in section 2, one

can take

u = W + ((1 − W ) mod |p00|) .

We let n = u · (XY )k. We have that gcd(p00, n) = 1 and:

√
ω · 2−ω · (XY )k · W ≤ n < 2 · (XY )k · W (7)

As in section 2, we must find a polynomial h(x, y) such that h(x0, y0) = 0
and h(x, y) is not a multiple of p(x, y). We let q(x, y) be the polynomial:

q(x, y) = p−1
00 · p(x, y) mod n

= 1 +
∑

(i,j)6=(0,0)

aijx
iyj

For all 0 ≤ i, j ≤ k, we form the polynomials:

qij(x, y) = xiyjXk−iY k−jq(x, y)

For all (i, j) ∈ [0, δ + k]2 \ [0, k]2, we also form the polynomials:

qij(x, y) = xiyjn

We consider the corresponding polynomials q̃ij(x, y) = qij(xX, yY ). Note that
for all (i, j) ∈ [0, δ+k]2, we have that qij(x0, y0) = 0 mod n, and the polynomial
q̃ij(x, y) is divisible by (XY )k.

Let h(x, y) be a linear integer combination of the polynomials qij(x, y); the

polynomial h̃(x, y) = h(xX, yX) is also a linear combination of the q̃ij(x, y) with
the same integer coefficients. We have that h(x0, y0) = 0 mod n and (XY )k

divides h(xX, yY ). Moreover h(x, y) has maximum degree δ + k independently
in x and y, therefore it is the sum of at most ω monomials. As in section 2,
we are interested in finding a polynomial h(x, y) such that the coefficients of
h(xX, yY ) are small enough, for the following two reasons:

1) if the coefficients of h(xX, yY ) are sufficiently small, then the equality
h(x0, y0) = 0 holds not only modulo n, but also over Z. From lemma 1, the
condition is:

‖h(xX, yY )‖ <
n√
ω

(8)

2) if the coefficients of h(xX, yY ) are sufficiently small, then h(x, y) cannot
be a multiple of p(x, y). Using lemma 3, the condition is:

‖h(xX, yY )‖ < 2−ω · (XY )k · W (9)

This condition is obtained by applying lemma 3 with a(x, y) = p(xX, yY ),
b(x, y) = h(xX, yY ) and r = (XY )k. Then we have a(0, 0) = p00 6= 0 and



gcd(a(0, 0), (XY )k) = 1. Under condition (9), h(xX, yY ) cannot be a multiple
of p(xX, yY ) and therefore h(x, y) cannot be a multiple of p(x, y).

Using inequality (7), we obtain that the first condition (8) is satisfied when-
ever the second condition (9) is satisfied.

We form the lattice L spanned by the coefficients of the polynomials q̃ij(x, y).
The polynomials qij(x, y) have a maximum degree of δ + k separately in x and
y; therefore, there are (δ + k + 1)2 such coefficients. Moreover, there is a total of
(δ+k+1)2 polynomials. This gives a full rank lattice of dimension ω = (δ+k+1)2.
In figure 1, we illustrate the lattice for δ = 1 and k = 1.

1 x y xy x2 x2y y2 xy2 x2y2

XY q XY a10X
2Y a01XY 2 a11X

2Y 2

Y xq XY a01XY 2 a10X
2Y a11X

2Y 2

Xyq XY a10X
2Y a01XY 2 a11X

2Y 2

xyq XY a10X
2Y a01XY 2 a11X

2Y 2

x2n X2n
x2yn X2Y n
y2n Y 2n
xy2n XY 2n
x2y2n X2Y 2n

Fig. 1. The lattice L for δ = 1 and k = 1

It is easy to see that the coefficient vectors of the polynomials q̃ij(x, y) form
a triangular basis of L. The determinant is then the product of the diagonal
entries. For 0 ≤ i, j ≤ k, the contribution of the polynomials q̃ij(x, y) to the
determinant is given by:

∏

0≤i,j≤k

(XY )k = (XY )k(k+1)2

The contribution of the other polynomials q̃ij(x, y) is then:

∏

(i,j)∈[0,δ+k]2\[0,k]2

X iY jn = (XY )
(δ+k)(δ+k+1)2

2 − k(k+1)2

2 nδ(δ+2k+2)

Therefore, the determinant of L is given by:

det(L) = (XY )
(δ+k)(δ+k+1)2+k(k+1)2

2 nδ(δ+2k+2) (10)

Using LLL (see theorem 3), we obtain in time polynomial in (log W, ω) a non-zero
polynomial h(x, y) such that:

‖h(xX, yY )‖ ≤ 2(ω−1)/4 · det(L)1/ω (11)



Note that any vector in the lattice L has integer coefficients divisible by (XY )k;
this means that in practice, it is more efficient to apply LLL to the lattice
(XY )−kL.

From inequality (11) we obtain that the conditions (8) and (9) are satisfied
when:

2(ω−1)/4 · det(L)1/ω < 2−ω · (XY )k · W (12)

In this case, we have that h(x0, y0) = 0 and h(x, y) is not a multiple of p(x, y).
Since p(x, y) is irreducible,

Q(x) = Resultanty(h(x, y), p(x, y))

gives a non-zero integer polynomial such that Q(x0) = 0. Using any standard
root-finding algorithm, we can recover x0, and finally y0 by solving p(x0, y) = 0.

Using inequality (7), we obtain that inequality (12) is satisfied when:

XY < 2−βW α (13)

where

α =
2(k + 1)2

(δ + k)(δ + k + 1)2 − k(k + 1)2
(14)

β =
10

4
· (δ + k + 1)4 + (δ + k + 1)2

(δ + k)(δ + k + 1)2 − k(k + 1)2
(15)

We have that for all δ ≥ 1 and k ≥ 0 :

α ≥ 2

3δ
− 2

3 · (k + 1)
(16)

and:

β ≤ 4k2

δ
+ 13 · δ (17)

Then, taking k = b1/εc, we obtain from (13), (16) and (17) the following condi-
tion for XY :

XY < W 2/(3δ)−ε · 2−4/(δ·ε2)−13δ (18)

For an XY satisfying (18), we obtain a bivariate integer polynomial root-
finding algorithm running in time polynomial in (log W, δ, 1/ε).

For an XY satisfying the slightly weaker condition (6), we exhaustively search
the high order 4/(δ·ε2)+13δ bits of x0, so that condition (18) applies, and for each
possible value we use the algorithm described previously. For a fixed ε > 0, the
running time is polynomial in (log W, 2δ). This terminates the proof of theorem
4. ut

As in [5], the efficiency of our algorithm depends on the shape of the poly-
nomial p(x, y). The previous theorem applies when p(x, y) has maximum degree
δ separately in x and y. If we assume that p(x, y) has a total degree δ in x and
y, we obtain the following theorem, analogous to theorem 3 in [5] (the proof is
given in appendix B).



Theorem 5. Under the hypothesis of theorem 4, except that p(x, y) has total

degree δ, the appropriate bound is:

XY < W 1/δ−ε

5 Comparison with Coppersmith’s Algorithm

We note that under the following condition, stronger than (6) :

XY < W 2/(3δ)−ε · 2−13δ

Coppersmith’s algorithm is polynomial-time in (log W, δ, 1/ε) (see [5], theorem
2), whereas our algorithm is polynomial-time in (log W, δ) but exponential-time
in 1/ε. Coppersmith’s algorithm is therefore more efficient than ours for small
values of ε. This implies that under the following condition, weaker than (6) :

XY < W 2/(3δ)

Coppersmith’s algorithm is still polynomial in (log W, 2δ) (see [5], corollary 2),
which is no longer the case for our algorithm.

6 Extension to More Variables

Our algorithm can be extended to solve integer polynomial equations with more
than two variables. As for Coppersmith’s algorithm, the extension is heuristic
only.

Let p(x, y, z) be a polynomial in three variables over the integers, of degree
δ independently in x, y and z. Let (x0, y0, z0) be an integer root of p(x, y, z),
with |x0| ≤ X , |y0| ≤ Y and |z0| ≤ Z. Let ` be an integer ≥ 0. As for the
bivariate case, we generate an integer n such that n = 0 mod (XY Z)`, and
a polynomial q(x, y, z) such that q(x0, y0, z0) = 0 mod n and q(0, 0, 0) = 1
mod n. Then we consider the lattice L generated by all linear integer combina-
tions of the polynomials xiyjzkX`−iY `−jZ`−kq(xX, yY, zZ) for 0 ≤ i, j, k ≤ `
and the polynomials (xX)i(yY )j(zZ)k · n for (i, j, k) ∈ [0, δ + `]3 \ [0, `]3. If the
ranges X, Y, Z are small enough, then by using LLL we are guaranteed to find a
polynomial h1(x, y, z) such that h1(x0, y0, z0) = 0 over Z and h1(x, y, z) is not a
multiple of p(x, y, z). Unfortunately, this is not enough. For small enough ranges
X, Y, Z, we can also obtain a second polynomial h2(x, y, z) satisfying the same
property. This can be done by bounding the norm of the second vector produced
by LLL, as in [1, 8]. Then we could take the resultant between the three polyno-
mials p(x, y, z), h1(x, y, z) and h2(x, y, z) in order to obtain a polynomial f(x)
such that f(x0) = 0. But we have no guarantee that the polynomials h1(x, y, z)
and h2(x, y, z) will be algebraically independent, for example we might have
h2(x, y, z) = x · h1(x, y, z). This makes the method heuristic only.



7 Practical experiments

An application of solving bivariate equations described in [5] is factoring an
RSA modulus n = pq when the high-order bits of p are known. Using our algo-
rithm from theorem 4, we obtain the following theorem, whose proof is given in
appendix C.

Theorem 6. For any ε > 0, given n = pq and the high-order (1/4 + ε) log2 n
bits of p, we can recover the factorization of n in time polynomial in log n.

By comparison, Coppersmith’s algorithm provides a slightly better result
since only the high-order 1/4 log2 n bits of p are required (see theorem 4, [5]).
The result of practical experiments are summarized in table 2, using Shoup’s
NTL library [14]. It shows that our bivariate polynomial root-finding algorithm
works well in practice.

N bits of p given lattice dimension running time

512 bits 144 bits 25 35 sec
512 bits 141 bits 36 3 min
1024 bits 282 bits 36 20 min

Fig. 2. Running times for factoring N = pq given the high-order bits of p, using our
bivariate integer polynomial root finding algorithm on a 733 Mhz PC running under
Linux.

We have also implemented the factorization of n = pq with high-order bits
known using the simplification of Howgrave-Graham [7]. Results are given in
table 3. It shows that the simplification of Howgrave-Graham is much more effi-
cient in practice. Namely, the factorization of a 1024-bit RSA modulus knowing
the high-order 282 bits of p takes roughly 20 minutes using our bivariate poly-
nomial root finding algorithm, and only one second using Howgrave-Graham’s
simplification. This is due to the fact that the Howgrave-Graham simplification
enables to obtain a lattice with a lower dimension (but it applies only to the par-
ticular case of factoring with high-bits known, not to the general case of finding
small roots of bivariate integer polynomials).

N bits of p given lattice dimension running time

1024 bits 282 bits 11 1 sec
1024 bits 266 bits 25 1 min
1536 bits 396 bits 33 19 min

Fig. 3. Running times for factoring N = pq given the high-order bits of p, using
Howgrave-Graham’s algorithm on a 733 Mhz PC running under Linux.



8 Conclusion

We have presented an algorithm for finding small roots of bivariate integer poly-
nomials, simpler than Coppersmith’s algorithm. The bivariate integer case is
now as simple to analyze and implement as the univariate modular case. Our
algorithm is asymptotically less efficient than Coppersmith’s algorithm, but ex-
periments show that it works well in practice; however, for the particular case of
integer factorization with high-bits known, the Howgrave-Graham simplification
appears to be more efficient.
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A Finding Small Roots in the General Case

The algorithm described in section 4 assumes that p(0, 0) 6= 0 and also that
gcd(p(0, 0), XY ) = 1. Here we show how to handle the general case.

If p(0, 0) = 0, we use a simple change of variable to derive a polynomial
p∗(x, y) such that p∗(0, 0) 6= 0. This is done as follows: we write p as p(x, y) =
x · a0(x) + y · c(x, y), where a0 is a polynomial of maximum degree δ − 1. Since
p(x, y) is irreducible, we must have a0 6= 0. Since deg a0 ≤ δ − 1, there exists
0 < i ≤ δ such that a0(i) 6= 0. Then p(i, 0) 6= 0 and letting p∗(x, y) = p(x + i, y),
we obtain that p∗(0, 0) 6= 0 and use p∗(x, y) instead of p(x, y).

If gcd(p(0, 0), XY ) 6= 1, we generate two random primes X ′ and Y ′ such that
X < X ′ < 2X and Y < Y ′ < 2Y , and X ′ and Y ′ do not divide p(0, 0). This
can be done in polynomial-time using the recursive prime generation algorithm
described in [10]. We then use X ′, Y ′ instead of X, Y .

B Proof of Theorem 5

We use the same n and the same q(x, y) as in section 4. We use the same
polynomials qij(x, y) = xiyjXk−iY k−jq(x, y), but only for 0 ≤ i+j ≤ k (instead
of 0 ≤ i, j ≤ k). We also use the polynomials qij(x, y) = xiyjn for k < i + j ≤
k + δ.

We obtain a full-rank lattice L of dimension ω = (k + δ + 1)(k + δ + 2)/2,
where the coefficient vectors of the polynomials q̃ij(x, y) form a triangular basis.
The contribution of the polynomials q̃ij(x, y) for 0 ≤ i+j ≤ k to the determinant
is given by:

∏

0≤i+j≤k

(XY )k = (XY )
k(k+1)(k+2)

2

and the contribution of the remaining polynomial is:
∏

k<i+j≤k+δ

X iY jn = (XY )d·(2+d2+6k+3k2+3d(1+k))/6 · nd(3+d+2k)/2

which gives:

det L = (XY )
3k(1+k)(2+k)+d(2+d

2+6k+3k
2+3d(1+k))

6 · nd(3+d+2k)/2

As before, the condition is:

2(ω−1)/4 det(L)1/ω < 2−(k+δ+1)2 · (XY )k · W
from which we derive the following condition on XY :

XY < W (1/δ)−ε · 2−4/(δε2)−13δ

for ε = O(1/k). As previously, we exhaustive search on the high-order 4/(δε2)+
13δ bits of x0, to obtain the bound:

XY < W (1/δ)−ε

while remaining polynomial-time in (log W, 2δ).



C Factoring with High-bits known: Proof of Theorem 6

Let N = pq be an RSA-modulus and assume that we know that high-order
(1/4 + ε) log2 N bits of p, for ε > 0. By division we also know the high-order
(1/4 + ε) log2 N bits of q. We write:

p = p0 + x0 q = q0 + y0

|x0| < p0N
−1/4−ε = X |y0| < q0N

−1/4−ε = Y

where p0 and q0 are known and x0 and y0 are unknown. We define the polynomial:

p(x, y) = (p0 + x) · (q0 + y) − N = (p0q0 − N) + q0x + p0y + xy

We have that p(x0, y0) = 0 and:

W = max(|p0q0 − n|, q0X, p0Y, XY ) > q0X >
1

2
N3/4−ε

We have:
XY = p0q0N

−1/2−2ε < N1/2−2ε

which gives:
XY < 2W 2/3−ε

so that by guessing one additional bit of x0 we are under the conditions of
theorem 4.


