
Event-Driven Rule-Based Reasoning using EYE

Ben De Meester1, Dörthe Arndt1, Pieter Bonte2, Jabran Bhatti3,
Wim Dereuddre3, Ruben Verborgh1, Femke Ongenae2, Filip De Turck2,

Erik Mannens1, and Rik Van de Walle1

1 Ghent University – iMinds – Multimedia Lab, Belgium
{ben.demeester, doerthe.arndt}@ugent.be

2 IBCN research group, INTEC, Ghent University – iMinds, Belgium
{pieter.bonte, femke.ongenae, filip.deturck}@intec.ugent.be

3 Televic Healthcare, Belgium
{j.bhatti, w.dereuddre}@televic.com

Abstract. Ontologies and reasoning algorithms are considered a promising ap-
proach to create decision making applications. Rule-based reasoning systems
have the advantage that rule sets can be managed and applied separately, which
facilitates the custom configuration of those systems. However, current imple-
mentations of rule-based reasoning systems usually introduce a trade-off between
expressiveness and performance, which either deteriorates the configurability of
the application, or limits its performance in an event-driven system. In this paper,
we devise an event-driven rule-based reasoning system that preserves its expres-
siveness. We devise an automatic nurse call system that is able to handle hard time
constraints without limiting the possibilities of the reasoner, and list the encoun-
tered problems together with their suggested solutions. We achieve reasonable
performance in small-scale environments when evaluating this system using N3
rules and the EYE reasoner. We however observe that a large dynamic database
limits the performance of the system, because of the file-based nature of the EYE
reasoner. As long as no in-memory reasoning is supported, the performance of
the resulting system cannot compete with the state of the art. However, the linear
scaling of the proposed expressive solution is promising.

Keywords: event-driven, EYE, N3, rule-based reasoning, stream reasoning

1 Introduction

This paper handles the building of an automatic nurse call system in a hospital. When
assistance is needed (e.g., when a patient calls for a nurse, or a monitoring machine
launches a call) the most suited nurse needs to be assigned to provide for the needed
assistance. The definition of “most suited” depends on the context, e.g., the trust re-
lationship between the nurse and the patient, the competences of the available nurses,
and the current locations of these nurses (among others). Moreover, this “most suited”
definition can be different for each hospital.

This decision making application thus needs to separate the execution strategy from
the execution engine, to enable ease of configurability. Such an execution strategy
is usually drafted as a decision tree, i.e., a sequence of “if this then that”. To design

2 Ben De Meester et al.

automatically executable decision trees, reasoning engines can be used. These reasoning
engines do not hard-code the execution strategy, but use external descriptions to define
this execution strategy, and thus provide for the needed separation. As such, execution
strategies could be devised and adjusted in different environments, without the need to
re-implement the entire application. To describe the context, ontologies can be used,
as they formally specify a shared conceptualization [8]. Complex systems that handle
real-life scenarios can thus be built by reasoning over these ontologies.

The nurse call system is an event-based system that should handle multiple events
per minute (e.g., calls are being made, nurses move, shifts change, etc.), and the system
has a hard time constraint, i.e., answers should always be given within a certain time.

The contribution of this paper is that we specifically devise a reasoning platform that
handles changing data in a timely manner, without sacrificing the ease of changing the
execution strategy. The relevant technologies and important modules of such a system
will be identified and specified in this paper, and encountered problems will be tackled.

In Section 2, we analyze the use case for which this system was designed. In
Section 3, we discuss relevant technologies and the state of the art, and draw conclusions
based on the use case and the related work that contributed to the design decisions
for the architecture of the system. In Section 4, we describe this architecture both
conceptually and via a proof-of-concept implementation which is then evaluated in
Section 5. Afterwards, conclusions are drawn in Section 6.

2 Use Case

The nurse call system implies implementing decision trees that are easily configurable,
and taking the machine-interpretable context into account. Previous work includes an
ontology built specifically to describe the context factors used for this use case, e.g.,
the factors that attribute to the definition of the “most suited nurse” [11]. This ontol-
ogy is called ACCIO, and its default prefix is accio4. ACCIO’s reasoning complexity
is SHIOQ(D). Below, we list the functional and non-functional requirements of the
reasoning platform.

Consistent state The platformmust be able to update its knowledge base when an event
is triggered, and keep this knowledge base consistent.

Scalable The platformmust cope with data sets until 50 000 relevant triples (i.e., triples
necessary to be included for the reasoning to be correct).

Expressive The platform must not only support the complexity of the ontology, but
also allow decision trees to be configured in varying complexity. This eases config-
urability.

Configurability The platform must have the ability to change these decision trees at
configuration time.

Real-time The platform must respond to any event within 5 seconds.

An analysis of the use case leads to the specifications listed below:

4 Also see http://users.intec.ugent.be/pieter.bonte/ontology/accio.html

http://users.intec.ugent.be/pieter.bonte/ontology/accio.html

Event-Driven Rule-Based Reasoning using EYE 3

1. Only a subset of the data is susceptible to change when an event is triggered, and
this subset can be defined at initialization time. This subset is quite small – around
15% – and is clearly defined, as only a couple of classes and predicates introduce
dynamic data5.

2. There are events that trigger a state change before the decision trees are visited,
e.g., a nurse walks from a certain location to another implies updating the nurse’s
location in the knowledge base.

3. A state change can be the output of the decision trees. For example, when a nurse
is busy with a certain patient, and he or she changes location, consensus is needed
whether his or her status changes to free, to another status, or not change at all. This
consensus could be different for different hospitals. These state changes should also
be persisted in the knowledge base, as they possibly influence next reasoning runs.

Conclusions that can be drawn from these observations are as follows:

1. Preprocessing the static data at initialization time can give a significant performance
gain, as this preprocessed optimized static data set can be reused every time an event
is triggered.

2. Preliminary status changes need to be done programmatically to avoid conflicting
data states. For example, when a nurse moves from the hallway to a patient’s room,
the current state of the reasoning system signifies that the nurse is in the hallway,
whilst the event data signifies that the nurse is in a patient’s room. Without updating
the current state before visiting the decision trees, the reasoner would reason about
the nurse being at two conflicting locations at the same time.

3. The second update needs to be done via reasoning. For example, when a patient
makes a call, that call is assigned to a certain nurse (via the decision trees).
This assignment should be persisted by, e.g., changing the status of the nurse to
accio:assigned. However, this should remain configurable, as the state of the
nurse might influence the decision trees (that are also configurable). The distinction
between reasoning results that should be persisted and those that shouldn’t is de-
pending on the use case, but can be described by rules. For example, all reasoning
results that involve a nurse’s state change should be persisted. This can be inter-
cepted by devising a rule that outputs all triples with predicate accio:hasStatus

and type accio:Person (this involves reasoning, as this rule also covers the status
of nurses and doctors, which cannot be solved generically by programming).

3 Related Work

The related work will be split up in three parts, to elaborate on ontology reasoning
(Subsection 3.1), implementing decision trees using rules (Subsection 3.2), and stream
reasoning (Subsection 3.3). We draw conclusions in Subsection 3.4

5 This ratio is irrespective of, e.g., the amount of nurses or patients in a hospital, thus, irrespective
of the initialized ABox, and was calculated by dividing the amount of triples of those classes
and/or having those predicates with the total amount of triples in the database.

4 Ben De Meester et al.

3.1 Ontologies and reasoning

The ACCIO ontology is described in the Web Ontology Language (OWL) [11], the
ontology description standard as defined by theWorldWideWebConsortium (W3C) [4].

OWL 2 profiles exist to trade expressiveness for performance, named OWL EL
(Existential quantification Language), OWLQL (Query Language), and OWL RL (Rule
Language). OWL EL is useful in applications utilizing an ontology that contains a large
number of properties and/or classes. An example of a performant OWL EL reasoner
is ELK [9]. OWL QL is created for applications where query answering is the main
task, and OWL RL provides scalable reasoning without sacrificing too much expressive
power. Due to the use case, the OWL RL profile seems most applicable.

3.2 Rule-based reasoning

Rule-based reasoning platforms have been used to aid in decision making use cases
for quite some time [7]. Since multiple reasoning systems exist, the execution strategy
defined as rules is completely independent of the actual reasoning platform. Moreover,
as both decision trees and rule-based reasoning follow the same kind of thinking (i.e.,
a sequence of ’if this then that’ steps), writing rules to specify decision trees comes
very natural. The used engine should be very expressive, to maximize configurability. In
rule-based reasoning engines, OWL-specific constructs need to be specified in rules6.

Notation3 (N3) is a Semantic Web logic. Being a superset of Turtle – a serialization
format of RDF data [3] – it is capable of describing everything using triples, but also
capable of describing rules to be executed on those triples. N3 differentiates itself from
other rule languages because of its expressiveness. For example, in N3 it is possible to
create rules in the consequence, and to use built-ins. The N3 logic has monotonicity of
entailment, which means that the hypotheses of any derived fact may be freely extended
with additional assumptions, which is an important property when reasoning about a
changing knowledge base.

The expressiveness of rule-based reasoning engines depends on which logic the
underlying programming language supports, and on the inherent expressiveness of the
rule language. RDFox is a triple store that supports arbitrary Datalog rules over RDF
triples [10]. FuXi7 supports the N3 syntax but it is a Datalog engine, which means that
FuXi does not support all N3’s expressitivity. The EYE reasoner [12] is a reasoning
engine that uses an optimized resolution principle, supporting forward and backward
reasoning. It is written in Prolog and supports, among others, all built-in predicates
defined in the Prolog ISO standard. Backward reasoning with new variables in the head
of a rule and list predicates are a useful plus when dealing with OWL ontologies8. This
is rather difficult in Datalog. As such, EYE is more expressive than RDFox or FuXi,
whilst being more performant than other N3 reasoners [12].

6 See http://www.w3.org/TR/owl2-profiles/#OWL_2_RL for the rule specification of OWL
RL, which can serve as a base of implementing the needed OWL constructs. However, the
ACCIO ontology requires more expressiveness than only OWL RL.

7 https://code.google.com/p/fuxi/

8 For example, to implement unionOf, see http://www.w3.org/TR/owl2-profiles/#cls-uni

http://www.w3.org/TR/owl2-profiles/#OWL_2_RL
https://code.google.com/p/fuxi/
http://www.w3.org/TR/owl2-profiles/#cls-uni

Event-Driven Rule-Based Reasoning using EYE 5

3.3 Stream reasoning

Complex Event Processing (CEP) is a research domain that handles the processing of
real-time information, i.e., stream processing [6]. CEP detects situations of interest based
on events, however, this is not sufficient for the use case at hand, as CEP cannot combine
the event data stream with background knowledge, and CEP does not support reasoning.
AData StreamManagement System (DSMS) handles data streams and enables installing
queries on top of these data streams. Continuous SPARQL (C-SPARQL) is an example
of a semantic DSMS [2].

Stream reasoning is the task of reasoning over streaming data (e.g., RDF triples) in a
timewindowwith respect to background knowledge (e.g., formalized in an ontology) [5].
Stream reasoning thus unifies general reasoning and stream processing whilst preserving
the order of the events. ETALIS is a rule-based stream reasoning engine that can reason
over RDFS ontologies [1].

3.4 Conclusions

When reviewing the ACCIO ontology and the decision trees of the use case, we can
conclude that a lot of expressiveness is needed. For example, one of the decision
tree nodes is about deciding which nurse to call, based on the location. This involves
arithmetic calculation using event data (i.e., calculate the euclidean distance between
the patient and the current location of the nurse). Another example is scoped negation.
When a nurse redirects a call (e.g., the nurse indicates that he/she will not answer the
call), another nurse needs to be assigned, using the same decision tree, but except the
nurse who redirected the call. To make sure these decision trees can be configured easily,
we require a lot of expressiveness of the rule language. As such, the combination of
the N3 language with the EYE reasoner seems a good fit for the task at hand, even
though the EYE reasoner is not optimized to support event-based data. Current stream
reasoners are not fit for the task as their expressiveness falls short. Also, the throughput
of events is a lot slower than for stream reasoners, in the order of multiple events per
minute, instead of multiple events per second.

The most important drawback of the EYE reasoner is that it is a file-based reasoner.
EYE processes all necessary ontologies, data, and rule files, and uses a query file that
filters the output of the reasoning result. This query file allows us to direct the reasoning
process to only return the relevant results. For example, when we reason about the
state change of a nurse (e.g., from free to with patient), the reasoner only returns the
status change. This avoids unwanted conflicting states. It accepts data from local files,
as well as from remote files (i.e., using URIs). For supporting the necessary OWL
constructs, we use already defined OWL-RL rules9, however, more complex constructs
are also supported. The fact that the EYE reasoner is a single process complicates the
implementation of an event-based rule system. Whereas most other reasoning engines
can keep data in memory, the EYE reasoner needs to re-read and parse all data from file
every time reasoning is requested. The larger the amount of data, the more time will be

9 http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_

using_Rules

http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules
http://www.w3.org/TR/owl2-profiles/#Reasoning_in_OWL_2_RL_and_RDF_Graphs_using_Rules

6 Ben De Meester et al.

wasted on this reading and parsing data from file (i.e., Disk I/O time). The EYE reasoner
however can export the parsed data as Prolog bytecode, enabling us to skip the parsing
step, and thus improving the Disk I/O time.

4 System Description

In Figure 1, the overall architecture of our system is shown. The static elements that
the system comprises are elaborated on in Subsection 4.1. A dynamic view is discussed
in Subsection 4.2. For each component, Figure 1 shows which elements are used (e.g.,
databases and/or rule files). The cog-icon shows how a component is mainly a coded
component, whereas a document-icon shows how this component is mainly a reasoning
component that works with a rule file. Two databases are used: a static and a dynamic
database. The dynamic database is annotated with an asterisk (*). Note that there is only
one static and one dynamic database, and the replication of the icons in the figure is
just to denote how each component makes use of which database. A grayed out element
signifies that that element is being updated in that component, thus, this system separates
between modules using the data (Decider) and modules changing the data (PreUpdater
and PostUpdater). The numbers from (0) till (6) show the flow of the dynamic system.
Number (0) only needs to be executed when the static data changes (e.g., when the
ontology changes or when the system is installed in another hospital), numbers (1)–(6)
are executed in order when an event comes in.

Decider

PostUpdater

PreUpdater

EventHandler

Initializer

 *

(0)

(1) (6)

(2)

(3)

(4)

(5)

 *

 *

 *

Fig. 1. The overall architecture of the system

4.1 Architecture

The devised system consists of five components, the Initializer, the EventHandler, the
PreUpdater, the Decider and the PostUpdater.

Event-Driven Rule-Based Reasoning using EYE 7

Initializer The Initializer only executes once at initialization time. This component is
responsible for the separation between static data and dynamic data, and to preprocess
the static data. The rule file of this component thus only needs to change when the
separation between static and dynamic data changes, or when the static data changes.
This is typically the case when an extra (dynamic) field is added to the used ontology.
Also note that the static data not only comprises the static data in the ABox, but also the
entire TBox, and – in this case – the rules that are used by the ontology. Themonotonicity
of the N3 logic allows us to preprocess and reason about the static data without negative
side-effects.

EventHandler The EventHandler is a customly written component for each individual
use case. It handles the incoming events, and handles the output of the Decider. For
example, after the Decider returns that Nurse A needs to be assigned to a certain patient
call, the EventHandler needs to make the actual call to Nurse A, for example by pushing
a notification to his or her smartphone.

PreUpdater The PreUpdater is a component that needs to check whether dynamic data
needs to be updated due to the incoming event. For example,when a certain nurse changes
his or her location, the internal state of the system needs to be updated accordingly. The
processing in this component cannot be done via rules as an event can imply inconsistent
states, e.g., when a nurse changes location, two conflicting locations are available in the
PreUpdater, one from the nurse’s previous state, and one from the event data.

Decider The Decider is the core reasoning component of the system. This component
uses the information of the current state of the database(s), and the new information of
the incoming event to infer new facts. At least a subset of the rules used by this decision
component is configurable for specific environments.

PostUpdater The PostUpdater uses a rule file to update the current state of the dynamic
data with the result of the Decider component and the handled event. By doing this
using a reasoning process, and not hard-coded, we allow this component to remain
configurable. As the EYE reasoner filters the output of the result, we can ask only for
relevant results. For example, when a reasoning process changes the status of a nurse,
the current statuses of the nurses are fed to the reasoning process, together with the event
and the rule files, and the output is the updated statuses of the nurses. This way, conflicts
are avoided.

4.2 Processing requirements

After the initialization phase (0), the system has successfully split up the static data
from the dynamic data and preprocessed the static data. In our case, this preprocessing
means that the EYE reasoner converts the static N3 data into compiled Prolog, which
means that all static data is already parsed and indexed when an event comes in.

When an event arrives (1), the EventHandler first executes the PreUpdater (2) to
make sure all dynamic data is first updated in the dynamic database. Hereafter, the
Decider component is executed (3), and the result is returned (4). This is the only

8 Ben De Meester et al.

result necessary to start executing the actual functions of the system (e.g., sending a
notification to Nurse A), but is also necessary to update the dynamic database (e.g.,
assigning the status of Nurse A to with patient). After the dynamic database is updated
by the PostUpdater (5), and all actions are executed, the final result is returned (e.g., a
success code), and the next event can be processed.

Multiple Initialized EYE instances There is a big downside with previously described
architecture: due to the file-based nature of the EYE reasoner, every reasoning run
involves reading in the static and dynamic data. This implies a huge overhead compared
with the actual reasoning times. As a first step to improve on this problem, we observed
that the EYE process has two ways of reading in data, i.e., using local files or via an
HTTP connection. If multiple data files (or URIs) are used, the EYE process parses each
of them in order.

When an EYE process reads data from an HTTP connection, it streams all data
from the HTTP connection to a local temporary file, and halts until the connection is
closed. After this connection is closed, the temporary file is read in, and the EYE service
executes the reasoning run.

Thus, we can devise a methodology where we present the EYE process with two
data inputs: a local file with the (large amount of) static data and a remote file with the
(relatively small) dynamic data. We thus initialize an EYE process by letting it read all
static data into memory, and afterwards block it on the HTTP connection.When an event
comes in, only the dynamic data needs to be read into memory by the EYE process, thus
gaining a great amount of Disk I/O time otherwise consumed by reading the static data
into memory first.

Secondly, we can observe that this static data that is being read into memory on
beforehand by definition does not change. Thus, initializing multiple EYE instances
with this static data will not have any effect on the reasoning results, as long as the
updated dynamic data is being consumed after a new event is triggered.

Streaming framework Intializing multiple EYE instances enables us to reason on
streaming data using time windows. Being event-driven, this framework is already
capable of reasoning on data streams. However, currently, the data has been summarized
on beforehand and returned as events (e.g., not every location update of a nurse is
triggered, only when a nurse changes room).

To use this framework for actual stream reasoning, we can pipe the data stream to
the HTTP connections of all initialized EYE instances. If we have a pool of four EYE
instances, and close off one HTTP connection every 500ms, we effectively have created
a streaming rule-based reasoning system with a time window of 4 ·500ms = 2s, where
reasoning is executed every 500ms. This implies that the reasoning results of concurrent
instances should not conflict with each other. As at any given time, there are at least
three out of four EYE instances running, it is not possible to feed the reasoning of the
last finished EYE instance to these already running EYE instances.

Event-Driven Rule-Based Reasoning using EYE 9

5 Evaluation

We evaluated the proposed system in terms of scalability using simulated data, based on
real-life situations, as deducted from user studies elaborated on in [11]. The simulated
data consists of a ward in a hospital, and the data was scaled by increasing the amount of
wards gradually to fill the ABoxwith more data. Afterwards, a use-case specific scenario
was run 35 times, 3 of these runs being warm-up runs. All experiments were run on
the same technology stack10. We ran the experiment with four variations, to compare
between the effect of splitting up the static data with the dynamic data, and the effect of
initializing multiple EYE instances concurrently. Four concurrent EYE processes were
started, as the used hardware consisted of a CPU with four cores.

Figure 2 shows the execution times for the scalability evaluation. By gradually
increasing the amount of wards, and thus the dynamic data, we see how the execution
time of the current system linearly increases with the size of the ABox, and has a total
execution time of about 5.5s for the largest dynamic database, i.e., fifty wards or about
50 000 triples in total. Of these 5.5s, about 0.6s is the actual decision making time. The
remaining 4.9s is mostly Disk I/O, and updating time via reasoning. Splitting the data
in static and dynamic parts improves the Disk I/O time for fifty wards with about 0.8s.

0

1000

2000

3000

4000

5000

6000

7000

0 10 20 30 40 50

E
x

ec
u

ti
o

n
 T

im
e

(m
s)

#wards

Splitting / 1 EYE Splitting / 4 EYEs

No splitting / 1 EYE No splitting / 4 EYEs

Fig. 2. Scaling the amount of hospital wards introduces a linear rise in execution time. We achieve
a total execution times of about 5.5s for fifty wards. Splitting the data into static and dynamic parts
improves the execution time with about 0.8s. Average reasoning times are consistently 11.33% of
the total execution time, e.g., the actual decision making time for fifty wards takes about 0.6s.

When we investigate the timings of the individual components (averaged over all
variations), we notice that the PostUpdater has a significant portion of the total execution

10 Hardware: Intel(R) Xeon(R) E5620@2.40GHz CPU with 12 GB RAM. Software: Debian
“Wheezy”, EYE 7995 and SWI-Prolog 6.6.6

10 Ben De Meester et al.

time: about 3.7s, or 70% of the total execution time (as compared to about 0.1s execution
time for the programmatic PreUpdater). About 3.2s of the PostUpdater execution time is
reasoning time, the other 0.5s is Disk I/O time. This is certainly a point of improvement,
as the large reasoning times of the PostUpdater compared to the reasoning times of the
Decider (about 0.8s) hint that the rule set of the PostUpdater could be optimized.

Taking a closer look into the reasoning times and Disk I/O times of the Decider (see
Figure 3), we see how splitting up the static from the dynamic data does improve the
Disk I/O times (from about 1.3s to about 0.5). We however also see that the reasoning
times of EYE instances in a pool are larger than the reasoning times of the individually
initialized EYE instances. This is probably due to the fact that concurrent EYE instances
hog the CPU more, as there are more instances running concurrently.

0

500

1000

1500

2000

2500

Splitting / 1 EYE No splitting / 1 EYE Splitting / 4 EYEs No splitting / 4 EYEs

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

reasoning reasoningIO

Fig. 3. Timings of the Decider for fifty wards show how splitting up the data positively impacts
the Disk I/O time, but running multiple instances concurrently negatively impacts the reasoning
time.

One could thus argue that splitting the data into static and dynamic parts, and only
initializing one EYE instance is the fastest solution. This is the case when new events
would only be triggered when all previous events are handled. Then, the single EYE
instance would process the previous event and then immediately start reasoning about
the next event. However, if multiple events could be triggered concurrently, they would
block, and be executed in order by the single EYE instance. Thus, the handling of the
first event would be finished after 5.5s, the second event would be handled after 11s, etc.
Using multiple EYE instances solves this bursting behavior partially, as multiple events
can be handled concurrently. However, the amount of concurrently initialized EYE
instances limits the bursting capabilities of the system. For example, if a system with
four concurrent EYE instances is initialized, and eight events are triggered at the same
time, the first four events would be finished after 5.5s, and the latter four events would
be handled after 11s. Initializing multiple concurrent EYE instances thus improves the
bursting behavior of the proposed system, but its applicability is limited and depends on
the rate of change of the environment.

Event-Driven Rule-Based Reasoning using EYE 11

6 Conclusion and Future Work

Reasoning applications have been successfully used for decision making problems.
However, current solutions usually introduce a trade-off between expressiveness and
performance. In this paper, we described a functional rule-based reasoning system using
the N3 logic and the EYE reasoner. This system has been applied to a nurse call
system. The system consists of an Initializer that separates static from dynamic data and
preprocesses the static data to improve performance, a PreUpdater that programmatically
updates the incoming event-data to avoid reasoning conflicts, a Decider that does the
actual decision making, a PostUpdater that updates the dynamic database using the
output of the Decider using a reasoning cycle, and an EventHandler to orchestrate all
the components.

We can conclude that the analysis of the TBox and ABox can give valuable insights
into constructing an event-driven system using rule-based reasoning. In our case, a large
part of the ABox was in fact static data, and the large TBox is by definition static,
so we could split up the data into a large piece of static data that can be optimized
and preprocessed on beforehand, and a relatively small piece of dynamic data. By
instantiating multiple reasoning instances concurrently, we degrade the performance
slightly, but we gain a much better bursting behavior. Updating data by reasoning over
updating rules is much slower than updating data programmatically, but allows for better
(and in this case, necessary) configurability. We however have to conclude that although
the current system does perform within reasonable times for the given use case with a
small-scale data set, and supports a high level of expressitivity, its performance is very
poor compared with the state of the art. The file-based nature of the EYE reasoner is
contradictory to an event-based system. Optimizations such as splitting up static and
dynamic data help, but adjustments to the core of the EYE reasoner are much needed
to achieve comparable reasoning times. We however need to take into account that in
this system, a lot of expressiveness is kept, and that the decision tree rules cannot be
optimized, as they need to be easily configured.

Future work is improving the PostUpdater rule set to improve its reasoning time and
improve the Disk I/O times by adjusting the EYE service to cope with in-memory data
instead of only file-based data. The linear correlation between ABox data and reasoning
time is promising to achieve good results for larger data sets. The strategy as explained
in Subsection 4.2 could also be implemented to adapt this framework for continuous
stream reasoning.

Acknowledgements The research activities described in this paperwere funded byGhent
University, iMinds, the IWT Flanders, the FWO-Flanders, and the European Union, in
the context of the project “ORCA”, which is a collaboration by Televic Healthcare,
Internet-Based Communication Networks and Services (IBCN), and Multimedia Lab
(MMLab).

References

1. Anicic, D., Fodor, P., Rudolph, S., Stojanovic, N.: Ep-sparql: a unified language for event pro-
cessing and stream reasoning. In: Proceedings of the 20th international conference on World

12 Ben De Meester et al.

Wide Web. pp. 635–644. ACM (2011), http://www.wwwconference.org/proceedings/
www2011/proceedings/p635.pdf

2. Barbieri, D.F., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: C-SPARQL: SPARQL
for continuous querying. In: Proceedings of the 18th international conference on World
Wide Web. pp. 1061–1062. ACM, New York, USA (2009), http://dx.doi.org/10.1145/
1526709.1526856

3. Beckett, D., Berners-Lee, T., Prud’hommeaux, E., Carothers, G.: Turtle - Terse RDF Triple
Language. Tech. rep., World Wide Web Consortium (W3C) (Feb 2014), http://www.w3.
org/TR/turtle/, accessed June 22nd, 2015

4. Bock, C., Fokoue, A., Haase, P., Hoekstra, R., Horrocks, I., Ruttenberg, A., Sattler, U., Smith,
M.: OWL 2 Web Ontology Language. Tech. rep., World Wide Web Consortium (W3C) (Dec
2012), http://www.w3.org/TR/owl2-syntax/, accessed June 22nd, 2015

5. Della Valle, E., Ceri, S., Van Harmelen, F., Fensel, D.: It’s a streaming world! reasoning
upon rapidly changing information. IEEE Intelligent Systems 24(6), 83–89 (Nov 2009),
http://doi.ieeecomputersociety.org/10.1109/MIS.2009.125

6. Etzion, O., Niblett, P.: Event Processing in Action. Manning Publications Co., Greenwich,
CT, USA, 1st edn. (2010)

7. Georgeff, M.P., Ingrand, F.F.: Decision-making in an embedded reasoning system. In:
Proceedings of the 11th Internation Joint Conferences on Artifical Intelligence (IJCAI-
89). Australian Artificial Intelligence Institute, Detroit, Michigan, USA (1989), http:

//ijcai.org/Past%20Proceedings/IJCAI-89-VOL-2/PDF/020.pdf

8. Gruber, T.R.: A translation approach to portable ontology specifications. Knowledge acqui-
sition 5(2), 199–220 (Jun 1993), http://www.sciencedirect.com/science/article/pii/
S1042814383710083

9. Kazakov, Y., Krötzsch, M., Simanc̆ík, F.: The incredible ELK – from polynomial procedures
to efficient reasoning with EL ontologies. Journal of Automated Reasoning 63(1), 1–61 (Jun
2014), http://link.springer.com/article/10.1007/s10817-013-9296-3

10. Motik, B., Nenov, Y., Piro, R., Horrocks, I., Olteanu, D.: Parallel materialisation of Datalog
programs in centralised, main-memory RDF systems. In: Proceedings of the Twenty-Eighth
AAAI Conference on Artificial Intelligence. vol. 1, pp. 129–137. Association for the Ad-
vancement of Artificial Intelligence (AAAI), The AAAI Press, Québec, Canada (Jul 2014),
https://krr-nas.cs.ox.ac.uk/2014/AAAI/RDFox/paper.pdf

11. Ongenae, F., Bleumers, L., Sulmon, N., Verstraete,M., VanGils,M., Jacobs, A., De Zutter, S.,
Verhoeve, P., Ackaert, A., De Turck, F.: Participatory design of a continuous care ontology:
towards a user-driven ontology engineeringmethodology. In: Proceedings of the International
Conference on Knowledge Engineering and Ontology Development (KEOD). Paris, France
(October 2011)

12. Verborgh, R., De Roo, J.: Drawing Conclusions from Linked Data on the Web: The EYE
Reasoner. IEEE Software 32(5), 23–27 (May 2015), http://online.qmags.com/ISW0515?
cid=3244717&eid=19361&pg=25

http://www.wwwconference.org/proceedings/www2011/proceedings/p635.pdf
http://www.wwwconference.org/proceedings/www2011/proceedings/p635.pdf
http://dx.doi.org/10.1145/1526709.1526856
http://dx.doi.org/10.1145/1526709.1526856
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/owl2-syntax/
http://doi.ieeecomputersociety.org/10.1109/MIS.2009.125
http://ijcai.org/Past%20Proceedings/IJCAI-89-VOL-2/PDF/020.pdf
http://ijcai.org/Past%20Proceedings/IJCAI-89-VOL-2/PDF/020.pdf
http://www.sciencedirect.com/science/article/pii/S1042814383710083
http://www.sciencedirect.com/science/article/pii/S1042814383710083
http://link.springer.com/article/10.1007/s10817-013-9296-3
https://krr-nas.cs.ox.ac.uk/2014/AAAI/RDFox/paper.pdf
http://online.qmags.com/ISW0515?cid=3244717&eid=19361&pg=25
http://online.qmags.com/ISW0515?cid=3244717&eid=19361&pg=25

	Event-Driven Rule-Based Reasoning using EYE
	Introduction
	Use Case
	Related Work
	Ontologies and reasoning
	Rule-based reasoning
	Stream reasoning
	Conclusions

	System Description
	Architecture
	Processing requirements
	Multiple Initialized EYE instances
	Streaming framework

	Evaluation
	Conclusion and Future Work

