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SOME CONSTRUCTIONS OF A-MINIMAL GRAPHS 

F. REGONATI,* Lecco and N. ZAGAGLIA SALVI,** Milano 

(Received July 14, 1992) 

1. INTRODUCTION 

Let G be a simple undirected graph, V(G) the set of vertices, n the order of V(G) 

and E(G) the set of edges of G. We will denote by N(x) the set of the neighbors 

of a given vertex x of G; when no confusion arises we will use the same symbol to 

denote the subgraph of G induced by the neighbors of x. 

We recall some definitions given by Harary and others in [4]. A k-coloring of G is 

a mapping / from V(G) to the k-set {1, 2, ..., k}. The color of an edge e = {u,v} 

of G induced by / is /(e) = {f(u), f(v)} and / is a line distinguishing coloring of G 

when /(ei) 7- /(e 2 ) for any two distinct edges e\ and e 2 of G. The line-distinguishing 

chromatic number of G, denoted A(G), is the minimum number k such that G has 

a line-distinguishing fc-coloring. G is called X-minimal if X(G — e) = X(G) — 1 for 

each edge e of G. We will say briefly that G is r-minimal instead of G is X-minimal 

and X(G) = r. Let us say that an edge is hated when it is contained in at least one 

triangle. 

In [4] the authors asked characterizations of A-minimal graphs. We have con­

structed in [6] the n-minimal graphs of maximum degree n — 1 or n — 2. Here we 

construct the triangulated n-minimal graphs, the (n—l)-minimal graphs having max­

imum degree n - 1 or n - 2 and the triangulated (n - 1)-minimal graphs with at least 

one nonhated edge. Moreover we give a conjecture on the remaining triangulated 

(n — l)-minimal graphs of diameter 3. 

* Work supported by C Valassi grant. 
** Work supported by Ministero dell' Universita e della Ricerca Scientifica e Tecnologica. 

315 



2 . TRIANGULATED n-MINIMAL GRAPHS. 

We recall that a graph G is triangulated if it contains no induced cycle of length 
greater than 3. 

The following Proposition, proved in [6], is useful to recognize n-minimal graphs. 

Proposition 2.1. A graph G is n-minimal if and only if any two distinct vertices 
of G have a common neighbor and for every edge e of G there is an edge e' of G 
which is adjacent to e such that the common vertex is the unique common neighbor 
of the other end of e' with the other end of e. 

E x a m p l e 2.1. We have proved in [6] that a graph G with a vertex z of degree 
n — 1 is n-minimal if and only if N(z) is an union of stars. We call these graphs 
hated stars because they can be obtained by adding at least one hat on each edge of 
a star. It is easily seen that any hated star is also triangulated. 

E x a m p l e 2.2. We call hated triangle any graph obtained by adding at least 
one hat on each edge of a triangle. It is easily seen that these graphs are n-minimal 
and triangulated. 

Figure 1. Figure 2. 

We will prove that there are not triangulated n-minimal graphs other than these 
ones. 

Proposition 2.2. The maximum order of a clique in a triangulated n-minimal 
graph G is 3.1 

P r o o f . G certainly contains some clique of order 3. We suppose by contradic­
tion that G contains a clique K of order 4. 

1 By passing, we note that the chromatic number of any triangulated n-minimal graph is 3. 
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Let / be any edge of K. By Prop. 2.1 there is an edge /' of G which is adjacent 
to / such that the common vertex x is the unique common neighbor of the other end 
x' oil' with the other end y oil. Since If is a clique of order 4, x' $. K and 

(D N(x')<lKÇ{x,y}. 

We claim that 

(2) N(x')f)K = {x}. 

Let m be the edge of K which is not adjacent to /. By Prop. 2.1, there is an edge 
m! of G which is adjacent to m such that the common vertex q is the unique common 
neighbor of the other end q' of m! with the other end r of m. Since K is a clique of 
order 4, q' £ K and 

(3) N(q')ПKÇ{q,r}. 

We note that x' ^ q'. By Prop. 2.1 x' and q' have a common neighbor w and, by 
(1) and (3), w £ K. We consider the cycle xx'wq'q and obtain, by the assumption 
G triangulated (see Fig. 3), that 

(4) x adj w adj q. 

Figure 3. Figure 4. 
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Now we consider the path x'wqy and obtain, by the assumption G triangulated (see 

Fig. 4), that x' nonadj y. This, together with (1), proves our claim. By symmetry 

we also obtain 

(5) N(q')nK = {q}. 

Now we consider the edge n = {r, y}. By Prop. 2.1 there is an edge n' of G which 

is adjacent to n such that the common vertex is the unique common neighbor of 

the other end of n' with the other end of n. By symmetry we can suppose that 

n' = {y', y}. We have N(y') n N(r) = {y}, y' £ K and 

(6) N(y')ПK = {y}. 

We note that x' 7- y'. By Prop. 2.1, x' and y' have a common neighbor z and, 

by (2) and (6), z fi K. Finally we consider the cycle xx'zy'y and obtain the desired 

contradiction with the assumption G triangulated (see Fig. 5). • 

Figure 5. 

A vertex x of a graph G is called simplicial if N(x) is a clique. Dirac [2] proved 

that a triangulated graph always has a simplicial vertex. Thus we have the 

Corollary 2.3. Any simplicial vertex of a triangulated n-minimal graph G has 

degree two. 

We now are ready to prove the 

T h e o r e m 2.4. A graph G is triangulated and n-minimal iff it is either a hated 

star or a hated triangle, according to G has maximum degree n — 1 or less. 

P r o o f . We only prove the nontrivial direction. We already know that an n-

minimal graph of degree n—1 is a hated star, so we have to show that any triangulated 

n-minimal graph G with maximum degree smaller that n — 1 is a hated triangle. 
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Let u be a simplicial vertex of C. By Corollary 2.3 N(u) has exactly two vertices 
x\, X2- The set of vertices having distance 2 from u splits into the subset A of the 
vertices which are adjacent to x\ but X2, the subset B of the vertices adjacent to 
both x\ and x2 and the subset C of the vertices adjacent to x2 but x\. A and C are 
not empty, otherwise G should have maximum degree n — 1. 

Step 1: no vertex of A is adjacent to a vertex of C, otherwise we should obtain an 
induced cycle of length 4. 

Step 2: any two vertices b\,b2 € B cannot be adjacent, otherwise G should contain 
a clique of order 4. 

Step 3: every vertex of A or C is adjacent to exactly one vertex of B. Indeed it 
is clear that any vertex a G A is adjacent to at least one vertex of B, for example 
a common neighbor of a and any c G C. On the other hand, if a is adjacent to two 
vertices h, b2 e B, then ab\x2b2 should be, by Step 2, a cycle of length 4. 

Step 4: there is a vertex b' € B which is adjacent to every vertex of A and every 
vertex of C. Indeed, if b' is a common neighbor of ai G A and c\ G C, then any 
C{ G C must be adjacent to b' otherwise a\ and ct- could not have, by Step 3, common 
neighbors. Analogously any az- G A must be adjacent to b'. 

Step 5. Finally we note that there is an hated triangle H, based on the triangle 
Xib'x2> which is a spanning subgraph of G. Since G is n-minimal, G = H. D 

3. T H E (n - 1)-MINIMAL GRAPHS OF MAXIMUM DEGREE n - 1 OR n - 2. 

The most elementary examples of (n — l)-minimal graphs are the stars (with 
n ^ 3). On the other hand, if G is any (n — l)-minimal graph of maximum degree 
n - 1 (with n > 3), then it has a spanning subgraph which is a star and hence G has 
to be a star. Thus we have the 

Proposition 3.1. Let G be any graph of maximum degree n - 1 (with n ^ 3). 
Then G is (n — I)-minimal iff it is a star. 

In order to construct the (n — l)-minimal graphs of maximum degree n — 2 it will 
be useful the 

Lemma 3.2. Let u be a vertex of degree d of a graph G. If X(G) = d, then there 
is an end-vertex adjacent to u. 

P r o o f . We consider a line-distinguishing d-coloring of G and note that the 
colors of the edges of G incident to u are {i, 1 } , . . . , {i}, . . . , {i,d}, where i (1 -<: i ^ d) 
is the color of u; so the neighbor of u having color i is an end-vertex of G. D 
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Theorem 3.3. Let G be any graph with X(G) = n - 1, u a vertex of degree n-2 

and w the vertex not adjacent to u. Then G is (n - \)-minimal if and only if N(w) 

consists of pairwise nonadjacent vertices v\, . . . , vp and N(u) is the union of N(w) 

with some stars S\, .... Sq (p, q ^ 0 but p + q > 0). 

Figure 6. 

P r o o f . We only prove the nontrivial direction. 
First of all we claim that none of the neighbors of u is an end-vertex. Otherwise, 

if x is an end-vertex adjacent to u, we argue as follows. We color u and x with the 
same color 1 and the other vertices with 2,3, . . . , n — 1, where n - 1 is the color of w. 

This is a line-distinguishing (n — l)-coloring of G. So, if we replace the color n - 1 
of w with another color 1 < i < n — 1, we have not a line-distinguishing coloring 
of G. This means that w has a common neighbor with every vertex but x and u. 

Then it is not hard to see that any two distinct vertices of G - x have a common 
neighbor. Thus X(G — ux) — n — 1, which is in contradiction with the assumption G 
A-minimal. This proves our claim; so we can say that the subgraph U of G induced 
by the neighbors of u which are not neighbors of w has not isolated vertices. Then 
it follows that U has a spanning subgraph S which is isomorphic to an union of 
stars. Finally we note that the edges of G incident to u, the edges of S and the 
edges of G which are incident to w but are not incident to some edge of S form a 
spanning subgraph H of G isomorphic to that described in the statement. Since G 
is (n — l)-minimal, G = H. D 

We note that these graphs are exactly those obtained from hated stars by deleting 
one of the edges incident to the centre.2 

1 We point out that certain extremal graphs are (n— l)-minimal. Erdos and others studied 
in [3] the minimum number F<f(n, k) of edges of a graph having n vertices, maximum 
degree k and diameter d. They proved that F2(n, n — 2) = 2n — 4 and gave as examples 
the graphs of our Th. 3.3, with q = 0. Further, they proved that F2(n, k) = 2n — 4 for 
(2n — 2)/3 ^ k ^ n — 5 and gave as examples the graphs obtained by deleting an edge 
(with at least two hats) from the central triangle of an hated triangle. These graphs are 
(n — l)-minimal. 
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4. TRIANGULATED (n - 1)-MINIMAL GRAPHS. 

The following remark will be useful to recognize the graphs having line-distin­
guishing chromatic number n — 1. 

Proposition 4 .1 . Let G be any graph. Then X(G) = n — 1 iff the following 

conditions hold: 

i) the maximum number of vertices of G having pairwise no common neighbor 

is two; 

ii) if u, v, x, y are distinct vertices of G such that u and v, as well as x and y, 

have no common neighbor, then 

(u adj x and v adj y) or (u adj y and v adj x). 

P r o o f . We only prove the "only if part of the statement. 

i) Obviously there are two vertices of G having no common neighbor. On the 
other hand, if there are three vertices of G having pairwise no common neighbor, 
then we color them with the color 1 and the other vertices of G with the colors 
2, . . . , n — 2 and obtain a line-distinguishing coloring of G, in contradiction with 
A(G) = n - l . 

ii) We color the vertices u, v with the color 1, the vertices x, y with the color 2, 
the remaining vertices of G with the colors 3, . . . , n — 2. This cannot be a line-
distinguishing coloring of G, so there are two distinct edges of G having the same 
color. This color must be {1,2}. • 

Examples of triangulated (n — l)-minimal graphs are: 
1) any star graph; 
2) any graph having a vertex u with is adjacent to every other but a vertex w, 

such that N(w) is the trivial graph and N(u) is the union of N(w) with some stars 
(see Th. 3.3); 

3) any graph obtained from two complete graphs H and K (each of order at least 3) 
and from a set L of pairwise non adjacent vertices by joining one vertex x G H with 
one vertex y € K and each vertex of L with both x and y; 

Figure 7. 
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4) any union of two nontrivial complete graphs. We note that, conversely, if an 
(n — l)-minimal graph G is the union of two nontrivial graphs H and K, then H and 
K are complete graphs. Indeed, if u, x G H and v, y G K, then u has no neighbor 
in common with v and x has no neighbor in common with H; then, by Proposition 
4.1, we have u adj x and v adj y. 

We will prove that the graphs of examples 1) and 2) are the unique triangulated 
(n — l)-minimal graphs having some nonhated edge. 

We conjecture that example 3) gives exactly the remaining triangulated (n — 1)-
minimal graphs of diameter 3. 

We note that, if e is any nonhated edge of a triangulated graph, then it is a bridge. 
Otherwise e is contained in a cycle of G and, if this cycle is chosen of minimum length, 
it is chordless and hence, since G is a triangulated graph, it is a triangle. 

T h e o r e m 4.2. Let G be any graph having a nonhated edge e. Then G is tri­

angulated (n — I)-minimal iff it is either a star graph or it has a vertex u which is 

adjacent to every other but a vertex w, N(w) is the trivial graph and N(u) is the 

union of N(w) with some stars. 

P r o o f . We only prove the nontrivial direction. 
As remarked above, e = {v,z} is a bridge; let G — e be the union of the graphs H 

and K, where v G H and z G K. We distinguish two cases. 
1) v and z are not end-vertices. 
First of all we note that all the remaining vertices are adjacent to u or z. Let 

x € H — v, y £ K — z. Obviously v and z, as well as x and y, have no common 
neighbor. Thus we obtain, by Proposition 4.1, that x adj v and y adj z. 

Then we claim that H and K cannot have both order greater than 2. Indeed, if x\, 

X2 G H — v and Hi, y2 G K — z, then x\ and Hi, as well as X2 and H2, have no common 
neighbor; thus, by Prop. 4.1, x\ adj X2 and Hi adj H2. This, together with the first 
remark, gives that both H and K are complete graphs. Thus X(G — e) = n — I, 

which is in contradiction with the assumption G (n — l)-minimal. This proves our 
claim, so we can think that K has order 2. 

Finally, we note that v has degree n - 2 and achieve the proof in the actual case 
by applying Th. 3.3. 

2) z, say, is an end-vertex. 

In this case K reduces to the trivial graph on z. In H there are two vertices p and 
q having no common neighbor, otherwise X(G — e) = n — 1, which is in contradiction 
with the assumption G (n — l)-minimal. Now, applying Prop. 4.1, we see that there 
is only one possibility: q = v, p adj v and pq is a nonhated edge, hence it is a bridge. 

If p is not an end-vertex, then we go back to case 1); so let p be an end-vertex. 
In this case we claim that v is adjacent to every other vertex of G. Otherwise, if t 
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is a vertex of G which is not adjacent to v, we note that t and p, as well as v and 
z, have no common neighbor, and it is easily seen that this leads to a contradiction 
with Prop. 4.L Thus G has to be a star graph. • 
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