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Abstract: Camellia, as the final winner of 128-bit block cipher in NESSIE, is the most secure block cipher of the world. In 2003, 
Tsunoo proposed a Cache Attack using a timing of CPU cache, successfully recovered Camellia-128 key within 228 plaintexts and 35 
minutes. In 2004, IKEDA YOSHITAKA made some further improvements on Tsunoo’s attacks, recovered Camellia-128 key within 221.4 
plaintexts and 22 minutes. All of their attacks are belonged to timing driven Cache attacks, our research shows that, due to its frequent 
S-box lookup operations, Camellia is also quite vulnerable to access driven Cache timing attacks, and it is much more effective than 
timing driven Cache attacks. Firstly, we provide a general analysis model for symmetric ciphers using S-box based on access driven 
Cache timing attacks, point out that the F function of the Camellia can leak information about the result of encryption key XORed with 
expand-key, and the left circular rotating operation of the key schedule in Camellia has serious designing problem. Next, we present 
several attacks on Camellia-128/192/256 with and without FL/FL-1. Experiment results demonstrate: 500 random plaintexts are enough 
to recover full Camellia-128 key; 900 random plaintexts are enough to recover full Camellia-192/256 key; also, our attacks can be 
expanded to known ciphertext conditions by attacking the Camellia decryption procedure; besides, our attacks are quite easy to be 
expanded to remote scenarios, 3000 random plaintexts are enough to recover full encryption key of Camellia-128/192/256 in both local 
and campus networks. Finally, we discuss the reason why Camellia is weak in this type of attack, and provide some advices to cipher 
designers for hardening ciphers against cache timing attacks.  
Key words: Camellia-128/192/256; block cipher; access driven; Cache timing attack; side channel attack; remote attack; F function; 

S-box lookup index; left circular rotating operation; key schedule; known ciphertext 

1 Introduction 

1.1 Related Works 

Recently, with the introduction of side channel attacks, ciphers were facing serious threats. Traditionally speaking, the security of 
cipher depends on the mathematical function EK[P]→C, the adversary tries to crack K from (P,C) by linear or differential methods. With 
the development of cipher designing, both the key length and algorithm complexity has been greatly improved, so it’s very difficult to 
predict K through mathematically analysis. However, recent research demonstrates that: during the cipher execution procedure, it may 
leaks some other information, such as execution timing, power consumption, electromagnetic dissipation, faults etc, which is what we 
called side channel information. So, in reality, a cipher is a function EK[P]→(C, L). The additional side channel information L has close 
relations with encrypt/decrypt key K. Through certain methods, combing the P or C, the adversary can derive K efficiently. The attacks 
presented in this paper use timing data.  

Cache Timing Attacks are new classes of side channel attacks. The feasibility of the Cache attacks was first mentioned by 
Kocher[1] and then Kelsey et al.[2] in 1996. They assumed that the adversary can use timing measurements to learn something about the 
cache accesses of a legitimate party, which turns out to be the case in some practical applications. Page[3] described and simulated a 
theoretical cache attack on DES in 2002. And subsequently, Tsunoo et al. [4][5] proposed a Cache Attack using a timing of CPU cache, 
successfully devised timing-based attack on DES and Camellia. In 2004, IKEDA YOSHITAKA et al.[6] made some further improvement 
on Tsunoo et al.’s Camellia attacks. In 2005, Bernstein[7] and Osvik, Shamir, and Tromer[8][9] showed in independent work that the 
Advanced Encryption Standard (AES) is particularly vulnerable to this type of side-channel attack, generating a lot of attention for the 
field. Subsequent work dealt with verifying the findings[10][11][12][13][14], improving the attack[15][16][17][18][19], and devising and analyzing 
countermeasures[20][21][22]. 

The cryptanalytic attention was mainly focused on DES and AES, and the countermeasures mainly target the implementation of 
cryptographic designs. None of the mentioned papers above except Tsunoo[5] and IKEDA YOSHITAKA[6] analyzed the Camellia-128 
with Cache timing attacks. In Tsunoo’s Camellia attack[5], they picked up 218 faster plaintexts from 228 random plaintexts and using 
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them with 224 brute force search for the sub-keys, finally found the secret key; In IKEDA YOSHITAKA’s Camellia-128 attack [6] , they 
made some further improvement on Tsunoo et al.’s Camellia-128 attack, through finding constraints of S-box inputs, recovered 
Camellia key with 221.4 plaintexts and 22 minutes CPU time under PentiumIII 550MHz. All of the Camellia attacks were measuring the 
whole encryption times and exploiting the effects of collisions between the various memory lookups invoked internally by the cipher, 
thus their attacks were all belonged to timing driven Cache attacks, and millions of samples were needed to predict the correct key. In 
the remote network environment, even the traffic jitter is more than the encryption time, so their attacks were quite impossible to be 
implemented into real remote scenarios. In this paper, we analyzed access driven Cache timing attacks on Camellia-128/192/256, a spy 
process was used to gather the accessed Cache set during Camellia encryption or decryption, and combined certain analysis methods to 
predict the encryption key. Our research shows that no matter known plaintext attack, known ciphertext attack, local and remote attack, 
it’s possible to recover full encryption key of Camellia-128/192/256 within less than 212 samples and 1 second analysis, even Camellia 
in OPENSSL-1.0.0-beta3 with FL/FL-1 function, which is the latest version published by July 2009.  

1.2 Our Contributions 

The contributions of our work can be summarized as follows: 
1) Provide a general analysis model for symmetric ciphers based on Cache timing side channel attack. 
This model can be applied to analyze any symmetric cipher using S-boxes, such as AES, SMS4, Camellia, ARIA, HC-128, HC-256 

etc, it’s quite effective, also it can be used to evaluate and test the security of ciphers against Cache timing attacks. 
2) Point out that Camellia F function might leak information about encryption key. 
During the analysis of Camellia F function, we find out: the Camellia F function of encryption procedure can leak secret 

information about Ki⊕KEj, Ki denotes one byte of encryption key K, KEj denotes one byte of the expand-key, and Camellia F function 
in key schedule can leak secret information about Ki or KEj, which means that sometimes we may derive partial bytes of K directly. 

3)  The <<< n left circular rotating operation of the key schedule in Camellia has serious designing problem. 
Once the adversary find a XOR collision about two variables generated by the left circular rotating of the same secret variable, it’s 

very easy to recover the correct secret variable. Combing the cipher algorithm design, the adversary can recover encryption key quite 
efficiently. Our experiments demonstrate that just analyzing one <<< 15 operation can narrow down the key searching space from2128 to 
2. And the key schedule of Camellia-192/256 has serious designing problem, the 5th input of the F function KA⊕KR can be recovered 
due to the left circular rotating of KA and KR by the same 15 bits during the generation of the 3rd to 6th round sub-key, and the output of 
the 6th F function KB can be recovered, which enable us to further recover full Camellia-192/256 key directly.  

4) Propose and realize several Cache timing attacks on Camellia-128/192/256. 
After analyzing on the F function and <<< operation of Camellia implementation, we have successfully designed and implemented 

several Cache timing attacks on Camellia-128/192/256. Experiment results demonstrate that even Camellia with FL/FL-1 is vulnerable 
to Cache timing attacks, all of the attacks can be realized within 212 samples and 1 second analysis; also, our attacks can be expanded to 
known ciphertext conditions by attacking the Camellia decryption procedure. Moreover, our techniques can be easily adapted into 
remote scenarios, 3000 random plaintexts are enough to recover full encryption key for Camellia-128/192/256 in both local and campus 
networks. Table 1 demonstrates the improvements of the attacks in this paper over several previous attacks.   

Table 1. Overview of attacks against Camellia 

Cipher Attack Type of Attack Rounds FL/FL-1 Data Time Key Recovery 
Camellia-128 [23]  Square attack 6 ⅹ 211.7 2112 128-bit 
Camellia-128 [24]  Truncated differential 8 ⅹ 283.6 255.6 128-bit 
Camellia-128 [25]  Impossible differential 7 ⅹ --- --- 128-bit 
Camellia-128 [33] Impossible differential 11 ⅹ 2120 283.4 128-bit 
Camellia-128 [5]  Cache Timing attack 6 ⅹ 228 35minutes 128-bit 
Camellia-128 [6] Cache Timing attack 6 ⅹ 221.4 22minutes 128-bit 
Camellia-128 Section 4 Cache Timing attack 4 ⅹ/√ 28.97 1s 128-bit 
Camellia-128 Section 6 Known ciphertext Cache Timing attack 4 ⅹ/√ 28.97 1s 128-bit 
Camellia-128 Section 7 Remote Cache Timing attack 4 ⅹ/√ 211.55 1s 128-bit 
Camellia-192/256 [33] Boomerang attack 9 √ 2124 2170 192/256-bit 
Camellia-192/256 [27]  Collision attack 9 ⅹ 213 2175.6 192/256-bit 
Camellia-192/256 [28]  Square attack 10 ⅹ --- 2186 192/256-bit 
Camellia-192/256 [29]  Impossible differential 12 ⅹ 2120 2181 192/256-bit 
Camellia-192/256 [33] Impossible differential 12 ⅹ 2119 2147.3 192/256-bit 
Camellia-192/256 Section 5 Cache Timing attack 6 ⅹ/√ 29.81 1s 192/256-bit 
Camellia-192/256 Section 6 Known ciphertext Cache Timing attack 6 ⅹ/√ 29.81 1s 192/256-bit 
Camellia-192/256 Section 7 Remote Cache Timing attack 6 ⅹ/√ 211.55 1s 192/256-bit 
Camellia-256 [30]  Square attack 9 √ 260 2202 256-bit 
Camellia-256 [31]  Integral cryptanalysis 9 √ 260.5 2202.5 256-bit 
Camellia-256 [26]  Rectangle attack 10 √ 2127 2241 256-bit 
Camellia-256 [27] Collision attack 10 ⅹ 214 2239.9 256-bit 
Camellia-256 [26] Differential 11 ⅹ 2104 2232 256-bit 
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Cipher Attack Type of Attack Rounds FL/FL-1 Data Time Key Recovery 
Camellia-256 [32]  High-order differential 11 ⅹ 221 2255 256-bit 
Camellia-256 [32] High-order differential 11 √ 293 2256 256-bit 
Camellia-256 [34] Square attack 11 ⅹ --- 2250 256-bit 
Camellia-256 [26] Linear cryptanalysis 12 ⅹ 2119 2247 256-bit 
Camellia-256 [33] Impossible differential 13 ⅹ 2120 2211.7 256-bit 

5) Discuss why and how these attacks work on Camellia, and provide some possible countermeasures. 
The responsibility of this attack should mainly lies in Camellia algorithm itself, both the F function and key schedule design of 

Camellia have serious weaknesses, which can be used to analyze the key efficiently. So, in order to prevent such kind of attack, we 
discuss how cipher designers can make such attacks more difficult in Section 8. 

1.3 Organization 

This paper is organized as follows: Section 2 briefly describes preliminaries of Cache timing attack on Camellia. Section 3 
presents the basic attack model and how it can be used into Camellia F function analysis. Section 4 presents attacks on Camellia-128, 
and Section 5 displays attacks on Camellia-192/256. Section 6 displays several known ciphertext attacks on Camellia, and Section 7 
displays remote timing attacks on Camellia. Section 8 discusses on the reason why Camellia is vulnerable to this type of attack and 
provides several advices to the cipher designer. Section 9 is the conclusion. 

2 Preliminaries 

2.1 Notations 

S1, S2, S3, S4: denote SBOX1_1110, SBOX2_0222, SBOX3_3033, SBOX4_4404 S-box separately in the code of Camellia 
integrated in OPENSSL-1.0.0-beta3. 
XL:  the left-half data of X 
XR:  the right-half data of X 
⊕:  bitwise exclusive-OR operation 
||:  concatenation of two operations 
<<< n: rotations to the left by n bits 
K: Camilla encryption key 
KE: Camellia expand key 
δ: the element count of a Cache block  
sr

i: denotes the i-st 32-bit input of the r-st F function call 

2.2 Cache Timing Attack 

Cache timing attacks exploit that loading data into a CPU register is faster when done from Cache than from RAM. By measuring 
Cache timings, the adversary can obtain or deduce certain information about the inner state of cipher. In the following, we point out 
why and how Cache becomes a convert channel for side channel attacks. 

Cache workings: 
Modern processors use one or more levels of set-associate memory Cache to solve the bottleneck between CPU and bus 

bandwidth. The cache is divided into S Cache sets, each contains W Cache lines, each line contains δ Cache elements (B bytes), so the 
overall Cache size is S*W*B bytes. 

The mapping of memory addresses into the Cache is limited as follows: 
Feature 1: When CPU reads a word A from the main memory, it first sends the memory address of A to the Cache and main 

memory, after that, Cache control logic unit judges whether A is in the Cache right now, if it is, a “Cache hit” occurs; if not, a “Cache 
miss” occurs, not only A but the memory block A belonging to (B bytes) is copied into one of the Cache lines. 

Feature 2: Each memory block can be cached only a specific Cache set, specifically, the memory block started at address a can be 
cached only in Cache set [a/B] mod/S. 

From Feature 1 we know that the same instruction to access the memory is affected by the historic state of whether the target data 
is in the Cache, if not , a delay by “Cache miss” appears, which might be represented by longer execute clock cycles or more power 
consumptions of the program. As to the clock cycle variation of typical processors, a “Cache hit” approximately needs 3 cycles, while a 
“Cache miss” might spend 12-100 cycles. So Cache hit and missing feature provides the timing leakage source for timing attacks. 

According to Feature 2, when different processes access self private data, as these data can be mapped into the same Cache set, 
thus share the Cache space together, so the spy process can monitor other process’s Cache access patterns by detecting self data access 
timing and power consumption pattern. So Cache resources sharing mechanism provides the convert channel for timing attacks. 

From the analysis above, the adversary can obtain a profile of Cache blocks that have been used by the cipher process. In local 
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attack, this profile has very little noise from other system processes, and in remote attacks, this profile has more noises from the 
receiving and sending data packets from the network. By repeating the experiment a number of times or increase the sample size, a 
good approximation of the real Cache access profile can be obtained. 

Note that instead of learning the content of the Cache block, the adversary learns something about the addresses of the Cache set 
accessed by the cipher. In symmetric ciphers using S-box, this address can be transferred into the indices of the S-box entries used for 
encryption, which in return can be used for an attack. 

Attack Classifications and Practicality: 
 According to the attacked unit of cipher implementation, Cache timing attack can be classified into data Cache, instruction Cache 

two types. Modern symmetric ciphers use many S-boxes to access data Cache, and become the main targets of data Cache timing 
attacks; meanwhile, public-key cryptosystems use many switch or jump cases to access instruction Cache, and thus become the main 
targets for I-Cache timing attacks. 

According to the different timing information gathered from Cache, the attack can be classified into timing driven, access driven, 
trace driven three types.  

As we all know, the attack can be composed of measuring and analyzing two phases. Timing driven Attack measuring phase is 
quite simple, it just measures the whole encrypt/decrypt times, combing certain statistics methods to analyze the key, due to the big 
timing noises by other processes, it needs millions of samples and complex methods to predict the correct key, meanwhile, in the remote 
network environment, even the traffic jitter is more than the encrypt/decrypt time, so it’s quite impossible to implement it into real 
remote scenarios.  

In access driven timing attack, the adversary use a spy process to get the Cache access profile about which Cache set has been 
accessed or un-accessed during one round or one time encryption, it’s much more efficient than timing driven attack. As the measuring 
spy process is disposed in the target cryptographic server, so the measuring accuracy and analysis efficiency is quite high, it has good 
applicability in both local and remote scenarios. 

Trace-driven analysis is of high efficiency, but needs to get the specific Cache hit/miss information during each S-box lookup to 
access the Cache, generally speaking, it is usually realized on electromagnetic leakage and power analysis, also needs to contact with 
the encryption equipment physically. So, the applicability of this attack in both local and remote environment is not quite practical.  

Attack Responsibility: 
Cache hit and miss timing variations provides the source for timing attacks; Cache space sharing and OS scheduling mechanism 

becomes the convert channel for spy process to measure cipher’s Cache access profile, which can be transferred into indices for S-box 
lookup entries; modern ciphers use many S-boxes access Cache to improve the efficiency, the S-box lookup indices has close 
relationship with the key. So Cache, OS, cipher algorithm all should share the responsibility for Cache timing attacks. Generally 
speaking, defending against Cache timing attack should consider from three aspects above, but due to the countermeasure cost and 
cipher applicability, the cipher designer should burden more responsibilities. The reason is that algorithms are designed only once, but 
implemented many times on many platforms. Thus, if we find out the convert channel in the algorithms, fix it at the balance of timing 
and security, thus side channel attacks can be avoided into the design phase, implementation become easier, which seems to be more 
preferable. Section 7 analyzes the convert Cache timing leakage channel and provides several advices for the cipher designers.   

Due to the applicability of access driven Cache timing attacks, we choose block cipher Camellia as the attack target, so it’s also 
belonged to data Cache attack.  

2.3 Description of the Camellia 

Camellia is a 128-bit block cipher jointly developed by NTT and Mitsubishi Electric Corporation in 2000[35]. It was chosen as a 
recommended algorithm by the NESSIE (New European Schemes for Signatures, Integrity and Encryption) project in 2003  [36] and was 
certified as the IETF (Internet Engineering Task Force) standard cipher for XML security URIs, SSL/TLS cipher suites and IPsec in 
2005[37][38][39]. In March 2009, Camellia was integrated into the OPENSSL-1.0.0-beta1[40], which is the most widespread cryptographic 
library of the world. A full description of the Camellia cipher is provided in [35][36], but below is a brief description of the cipher’s 
properties that are utilized in this study.  

Encryption Procedure: 
Camellia is an iterated cipher. Camellia takes a 128-bit plaintext P as input, and has a total of N rounds, where N is 18 for 

Camellia-128, and 24 for Camellia-192/256. Camellia-128(192/256) requires 22(29)-rounds of data processing composed of three main 
parts: an 18(24)-round Feistel structure, two (three) FL function and FL-1 function rounds inserted every 6 rounds, and two input/output 
whitenings. Fig.1 shows the entire encryption process using 128-bit key. In the first and last round, the 128-bit data block is XORed 
with 128-bit round keys. Before the data block is fed to the Feistel network, it is separated into two 64-bit data blocks. The left half goes 
into the F function together with the 64-bit round key and the output of the F function is XORed with the right half block. At the end of 
each round, the right and left half block will be exchanged. In the F function, the input 64-bit data is first XORed with the 64-bit round 
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key and then grouped into eight 8-bit data blocks. All of them are separately input to eight S-boxes. 
In Camellia, four types of S-boxes are applied and each one consists of a multiplicative inversion and affine transformations. A 

linear 64-bit permutation follows the nonlinear substitution of S-boxes. The FL and FL-1 functions inserted every 6 rounds are used to 
provide non-regularity between the rounds so that the security of the cipher is increased and these two functions are similarly 
constructed by logical operations including AND, OR, XOR, and rotations. 
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Fig.1 Encryption process of Camellia 

Key Schedule: 
Fig.2 shows the key schedule of Camellia. Two 128-bit variables KL and KR are defined as follows. For 128-bit keys, the 128-bit key K 

is used as KL and KR is 0. For 192-bit keys, the left 128-bit of the key K is used as KL, and concatenation of the right 64-bit of K and the 
complement of the right 64-bit of K is used as KR. For 256-bit keys, the left 128-bit of the key K is used as KL and the right 128-bit of K 
is used as KR. Two 128-bit variables KA and KB are generated from KL and KR as shown in Fig 2. Note that KB is used only if the length 
of the secret key is 192 or 256 bits. The 64-bit constants ∑i (i = 1, 2, …, 6) are used as ”keys” in the Feistel network. They are defined 
as continuous values from the second hexadecimal place to the seventeenth hexadecimal place of the hexadecimal representation of the 
square root of the i-th prime. The 64-bit sub-keys kwt, ku, and klv are generated from KL, KR, KA, and KB. The sub-keys are generated by 
rotating KL, KR, KA, and KB and taking the left or right-half of them. Details are shown in Table 2 and Table 3. 
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Fig.2 key schedule of Camellia 

Table 2. Sub-keys for 128-bit keys 

NO Operation subkey value NO Operation subkey value 
1 Prewhitening kw1(KE0, KE1) (KL<<<0)L 14 F (Round10) k10(KE26, KE27) (KL<<<60)R
2 Prewhitening kw2(KE2, KE3) (KL<<<0)R 15 F (Round11) k11(KE28, KE29) (KA<<<60)L
3 F (Round1) k1(KE4, KE5) (KA<<<0)L 16 F (Round12) k12(KE30, KE31) (KA<<<60)R
4 F (Round2) k2(KE6, KE7) (KA<<<0)R 17 FL kl3(KE32, KE33) (KL<<<77)L
5 F (Round3) k3(KE8, KE9) (KL<<<15)L 18 FL−1 kl4(KE34, KE35) (KL<<<77)R
6 F (Round4) k4(KE10, KE11) (KL<<<15)R 19 F (Round13) k13(KE36, KE37) (KL<<<94)L
7 F (Round5) k5(KE12, KE13) (KA<<<15)L 20 F (Round14) k14(KE38, KE39) (KL<<<94)R
8 F (Round6) k6(KE14, KE15) (KA<<<15)R 21 F (Round15) k15(KE40, KE41) (KA<<<94)L
9 FL kl1(KE16, KE17) (KA<<<30)L 22 F (Round16) k16(KE42, KE43) (KA<<<94)R
10 FL−1 kl2(KE18, KE19) (KA<<<30)R 23 F (Round17) k17(KE44, KE45) (KL<<<111)L
11 F (Round7) k7(KE20, KE21) (KL<<<45)L 24 F (Round18) k18(KE46, KE47) (KL<<<111)R
12 F (Round8) k8(KE22, KE23) (KL<<<45)R 25 Postwhitening kw3(KE48, 

KE49) 
(KA<<<111)L

13 F (Round9) k9(KE24, KE25) (KA<<<45)L 26 Postwhitening kw4(KE50, 
KE51) 

(KA<<<111)R

Table 3. Sub-keys for 192/256-bit keys 

NO Operation subkey value NO Operation subkey value 
1 Prewhitening kw1(KE0, KE1) (KL<<<0)L 18 FL−1 kl4(KE34, KE35) (KL<<<60)R
2 Prewhitening kw2(KE2, KE3) (KL<<<0)R 19 F (Round13) k13(KE36, KE37) (KR<<<60)L
3 F (Round1) k1(KE4, KE5) (KB<<<0)L 20 F (Round14) k14(KE38, KE39) (KR<<<60)R
4 F (Round2) k2(KE6, KE7) (KB<<<0)R 21 F (Round15) k15(KE40, KE41) (KB<<<60)L
5 F (Round3) k3(KE8, KE9) (KR<<<15)L 22 F (Round16) k16(KE42, KE43) (KB<<<60)R
6 F (Round4) k4(KE10, KE11) (KR<<<15)R 23 F (Round17) k17(KE44, KE45) (KL<<<77)L
7 F (Round5) k5(KE12, KE13) (KA<<<15)L 24 F (Round18) k18(KE46, KE47) (KL<<<77)R
8 F (Round6) k6(KE14, KE15) (KA<<<15)R 25 FL kw3(KE48, KE49) (KA<<<77)L
9 FL kl1(KE16, KE17) (KR<<<30)L 26 FL−1 kw4(KE50, KE51) (KA<<<77)R
10 FL−1 kl2(KE18, KE19) (KR<<<30)R 27 F (Round19) k19(KE52, KE53) (KR<<<94)L
11 F (Round7) k7(KE20, KE21) (KB<<<30)L 28 F (Round20) k20(KE54, KE55) (KR<<<94)R
12 F (Round8) k8(KE22, KE23) (KB<<<30)R 29 F (Round21) k21(KE56, KE57) (KA<<<94)L
13 F (Round9) k9(KE24, KE25) (KL<<<45)L 30 F (Round22) k22(KE58, KE59) (KA<<<94)R
14 F (Round10) k10(KE26, KE27) (KL<<<45)R 31 F (Round23) k23(KE60, KE61) (KL<<<111)L
15 F (Round11) k11(KE28, KE29) (KA<<<45)L 32 F (Round24) k24(KE62, KE63) (KL<<<111)R
16 F (Round12) k12(KE30, KE31) (KA<<<45)R 33 Postwhitening kw3(KE64, KE65) (KB<<<111)L
17 FL kl3(KE32, KE33) (KL<<<60)L 34 Postwhitening kw4(KE66, KE67) (KB<<<111)R

3 Attack Model 

3.1 General Attack Model 

Modern block ciphers usually use many large S-boxes to access Cache so as to improve the encrypt/decrypt efficiency. During 
S-box lookup procedure, it always has the following formula: 

α β γ=                                                      (1) 

Then, formula (1) can be transferred to: 
α γ β=                                                      (2) 
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α : Part of the plaintext (first round analysis) or ciphertext (last round analysis), even the known inner state. 
β : Parameter related with the key, usually an expression composed of a set of key and expand-key (K,E). 
γ : Parameter related with the S-box lookup indices or results. 

: Denote one or more certain logical operations betweenα and β , such as⊕ for AES, SMS4, and Camellia.  
 From Section 2.2, we know that the adversary can get γ through the measuring phase of Cache timing attack, asα is usually 

known, then, it’s not difficult to compute β , finally predict the correct key K. It usually adopts the following analysis strategy: 

Strategy 1: Analyze the un-accessed Cache addresses of S-box lookup 
Suppose the adversary get the impossible value of γ ,α sometimes is known, thus he can get the impossible value of β , combing 

analyzing the relations between β and K, then deduce the impossible value of K and finally recover the key. 

Strategy 2: Analyze the accessed Cache addresses of S-box lookup 
First the adversary fixes valueα , but generates different values of plaintext P or ciphertext C, so the Cache access profiles are 

different, as we know that β is fixed, if the adversary can get the accessed Cache traces, then predict some candidates of γ , from 
formula (2), he can directly get a possible set of β candidates, the correct candidate β is always belong to this set, then fixes another 
value forα , using the same methods above to improve the predict frequency of correct β , after several times of analyzing, the one 
with the highest frequency is always the correct value for β . Combing analyzing the relations between β and the key K, correct key K 

can also be predicted. 
As every un-accessed Cache set is related with δ (usually δ=16) impossible S-box lookup indices and results, using analysis 

strategy 1 the adversary can eliminate δ impossible β candidates, it’s quite effective. In the following paper, we adopt the strategy 1 to 

analyze the Camellia F function. 

3.2 Camellia F Function Attack Model 

After analyzing on Camellia algorithm, it’s clear to see that only F function executes 8 times S-box lookup operations, specifically 
speaking, 2 times for every 4 S-boxes during one F function call. Fig 3 displays C code of F function of Camellia in 
OPENSSL-1.0.0-beta3. 

 #define Camellia_Feistel(_s0,_s1,_s2,_s3,_key) do {\ 
1 register u32 _t0,_t1,_t2,_t3;\ 
2 \ 
3 _t0  = _s0 ^ (_key)[0];\ 
4 _t3  = S4[_t0&0xff];\ 
5 _t1  = _s1 ^ (_key)[1];\ 
6 _t3 ^= S3[(_t0 >> 8)&0xff];\ 
7 _t2  = S1 [_t1&0xff];\ 
8 _t3 ^= S2[(_t0 >> 16)&0xff];\ 
9 _t2 ^= S4[(_t1 >> 8)&0xff];\ 
10 _t3 ^= S1[(_t0 >> 24)];\ 
11 _t2 ^= _t3;\ 
12 _t3  = RightRotate(_t3,8);\ 
13 _t2 ^= S3[(_t1 >> 16)&0xff];\ 
14 _s3 ^= _t3;\ 
15 _t2 ^= S2[(_t1 >> 24)];\ 
16 _s2 ^= _t2; \ 
17 _s3 ^= _t2;\ 
} while(0) 

Fig.3 The C code of Camellia F function in openssl-1.0.0-beta3 

According to the specification of Camellia, we suppose that the input _s0,_s1,_s2,_s3 can be expressed as: 

1_ =s α β⊕                                                      (3) 

_ s : _s0,_s1,_s2,_s3; α : part of the plaintext or some known inner state; 1β : parameter related with K or KE;  

From Code 4,6,7,8,9,10,13,15 line, we can clear to see that the index of Sn entry can be expressed as: 
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1 2 nγ ϕ α β β= ⊕ ⊕（ , ）                                               (4) 

ϕ denotes a function to return the n-st byte of a 32-bit value; γ denotes the index of Sn entry.  

The adversary can gather γ through Cache timing attack measuring phase, α and n is also known, so the candidates 

for 1 2β β⊕ can be predicted. If the encrypt plaintext changed, γ andα is changed, so 1 2β β⊕ can be predicted more efficiently.  

The adversary can finally recover the correct 1 2β β⊕ value, and use it for further analysis. 

4 Camellia-128 Attack 

4.1 First Round Attack 

First the plaintext P is XORed with the 128-bit encryption key K (also KE0, KE1, KE2, KE3), the output is X. Before X is fed to the 
Feistel network, it is separated into two 64-bit data blocks. The left half XL goes into the F function together with the 64-bit round key 
(KE4, KE5) and the output of the F function is XORed with the right half block XR. At the end of F function, the right and left half 
block will be exchanged. 

According to Fig.1 and formula (4), we can see that X can be expressed as P K⊕ , so obviously, 1β  in formula (3) and (4) can be 

expressed as KE0, KE1 in the first round Camellia F function call. Then, we have 8 equations as follows: 

1 0 0,0 4,0 1 7 1,3 5,3

2 1 0,1 4,1 2 4 1,0 5,0

3 2 0,2 4,2 3 5 1,1 5,1

4 3 0,3 4,3 4 6 1,2 5,2

      
     
     
     

P KE KE P KE KE
P KE KE P KE KE
P KE KE P KE KE
P KE KE P KE KE

γ γ

γ γ

γ γ

γ γ

= ⊕ ⊕ = ⊕ ⊕

= ⊕ ⊕ = ⊕ ⊕

= ⊕ ⊕ = ⊕ ⊕

= ⊕ ⊕ = ⊕ ⊕

                                  (5) 

nγ denotes the index of Sn entry, its candidates can be gathered from measuring phase, suppose we get the impossible value of nγ , 

as P is known, so according to formula (5), we can get the impossible value for 0 4KE KE⊕  and 1 5KE KE⊕ , after analysis of more 

samples, finally recover the correct value for 0 4KE KE⊕  and 1 5KE KE⊕ . 

If 0 4KE KE⊕  and 1 5KE KE⊕  is known after analyzing, as P is known, we can get every S-box lookup index γ , so obviously, 

we can also get every S-box lookup result. From the F function code of Fig 3, we can see that the output s1
2, s1

3 can be expresses as 
the input s1

2, s1
3 XORed with many S-box lookup results. So, finally, the adversary can know that the output s1

2, s1
3 can be expressed 

the input s1
2, s1

3 XORed with a known variable c1, output s1
2, s1

3 can be expressed as follows: 

1 1
2 2 2 4 1,0 5,0 3 5 1,1 5,1 4 6 1,2 5,2

1 7 1,3 5,3 1 0 0,0 4,0 2 1 0,1 4,1

3 2 0,2 4,2 4 3 0,3 4,3

1 1
3 3 2 4

^ [ ] ^ [ ] ^ [ ] ^
           [ ] ^ [ ] ^ [ ] ^
           [ ] ^ [ ]      

^ [

s s S P KE KE S P KE KE S P KE KE
S P KE KE S P KE KE S P KE KE
S P KE KE S P KE KE

s s S P

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕

= 1,0 5,0 3 5 1,1 5,1 4 6 1,2 5,2

1 7 1,3 5,3 1 0 0,0 4,0 2 1 0,1 4,1

3 2 0,2 4,2 4 3 0,3 4,3 1 0 0,0 4,0

] ^ [ ] ^ [ ] ^
           [ ] ^ [ ] ^ [ ] ^
           [ ] ^ [ ] ^ RightRotate( [ ] ^

KE KE S P KE KE S P KE KE
S P KE KE S P KE KE S P KE KE
S P KE KE S P KE KE S P KE KE

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

2 1 0,1 4,1 3 2 0,2 4,2 4 3 0,3 4,3          [ ] ^ [ ] ^ [ ],8)S P KE KE S P KE KE S P KE KE⊕ ⊕ ⊕ ⊕ ⊕ ⊕

           (6) 

So, after analyzing the first round Camellia F function call, we can get 0 4KE KE⊕ , 1 5KE KE⊕  ( ( 0) ( 0)L L BK K<<< ⊕ <<< L ) 

and compute the output s1
2, s1

3, it’s clear to see that we can’t recover the 0 1(( 0)L LKE KE K <<<, ) directly. 

4.2 Second Round Attack 

From Section 4.1 we know that, during the first round F function, the output s1
0, s1

1 are the same as the input s1
0, s1

1, the output 
s1

2, s1
3 can be expressed the input s1

2, s1
3 XORed with a known variable c, finally the left and right half block (s1

0, s1
1, s1

2, s1
3) will be 
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exchanged as the input of the second round F function.(s1
2, s1

3, s1
0, s1

1, also can be expressed as s2
0, s2

1, s2
2, s2

3). Note that the second 
round F function uses the other 64-bit round key (KE6, KE7). 

Also, according to Fig.3 and formula (4), we have 8 equations as follows: 

1 8 2,0 6,0 1 15 3,3 7,3

2 9 2,1 6,1 2 12 3,0 7,0

3 10 2,2 6,2 3 13 3,1 7,1

4 11 2,3 6,3 4 14 3,2 7,2

      
     
     
     

P KE KE P KE KE
P KE KE P KE KE
P KE KE P KE KE
P KE KE P KE KE

γ γ

γ γ

γ γ

γ γ

= ⊕ ⊕ = ⊕ ⊕

= ⊕ ⊕ = ⊕ ⊕

= ⊕ ⊕ = ⊕ ⊕

= ⊕ ⊕ = ⊕ ⊕

                                  (7) 

Using attack model in Section 3.2, we can recover the correct value for 2 6KE KE⊕ and 3 7KE KE⊕ , then compute the output s2
2, 

s2
3 can be expressed the input s2

2, s2
3 XORed with a known variable c2. 

2 2
2 2 2 12 3,0 7,0 3 13 3,1 7,1 4 14 3,2 7,2

1 15 3,3 7,3 1 8 2,0 6,0 2 9 2,1 6,1

3 10 2,2 5,2 4 11 2,3 6,3

2 2
3 3

^ [ ] ^ [ ] ^ [ ] ^
           [ ] ^ [ ] ^ [ ] ^
           [ ] ^ [ ]      

s s S P KE KE S P KE KE S P KE KE
S P KE KE S P KE KE S P KE KE
S P KE KE S P KE KE

s s

= ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕

= 2 12 3,0 7,0 3 13 3,1 7,1 4 14 3,2 7,2

1 15 3,3 7,3 1 8 2,0 6,0 2 9 2,1 6,1

3 10 2,2 5,2 4 11 2,3 6,3 1 8

^ [ ] ^ [ ] ^ [ ] ^
           [ ] ^ [ ] ^ [ ] ^
           [ ] ^ [ ] ^ RightRotate( [

S P KE KE S P KE KE S P KE KE
S P KE KE S P KE KE S P KE KE
S P KE KE S P KE KE S P K

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

⊕ ⊕ ⊕ ⊕ ⊕ 2,0 6,0

2 9 2,1 6,1 3 10 2,2 5,2 4 11 2,3 6,3

] ^
          [ ] ^ [ ] ^ [ ],8)

E KE
S P KE KE S P KE KE S P KE KE

⊕

⊕ ⊕ ⊕ ⊕ ⊕ ⊕

             (8) 

After analyzing the second round Camellia F function call, we can get 2 6KE KE⊕ , 3 7KE KE⊕ ( ( 0) ( 0)L R BK K<<< ⊕ <<< R )  

and compute the output s2
2, s3

3, but we can’t recover 2 3 (( 0)L RKE KE K <<<, ) . In order to recover part or full key K, we have to 

expand Cache timing attack to further rounds. 

4.3 Further Rounds Attack 

In order to further reduce the searching space for K, we need to get more information about K and KE. So, this section will display 
how to get more information about K and KE, but note that we still can not get K directly from attacking the encryption procedure. 

From section 4.1 we know that, the input Sr+1
0, Sr+1

1 can be expressed as the input Sr
2, Sr

3 XORed with a known variable cr(a value 
we can deduce from the r-st round attack). As the initial two rounds input Sr

0, Sr
1(r=1,2) is X(X=P⊕K), so if r is an odd number, the 

input Sr+1
0, Sr+1

1 can be expressed as the left half XL XORed with a known variable C1^…^Cr(r is an odd number); if r is an even 
number, the input Sr+1

0, Sr+1
1 can be expressed as the right half XR XORed with a known variable C2^…^Cr. But note that Camellia with 

FL/FL-1 functions inserted every 6 rounds are used to provide non-regularity between the rounds, so it’s very hard for the adversary to 
compute the input Sr

0, Sr
1 (r>6) as X XORed with c. But for Camellia without FL/FL-1 function, the adversary can compute the input 

Sr
0, Sr

1 (r=1, …, 18) as X  XORed with c.

According to formula (4), after analyzing on first 6 rounds F function calls (Camellia with FL/FL-1), what we can get is shown in 
Table 4. 

Table 4. Attack results of first 6 rounds Camellia-128 

Round Result Round Result 

1 KE0⊕KE4||KE1⊕KE5 ((KL<<<0)L⊕(KA<<<0)L) 4 KE2⊕KE10||KE3⊕KE11 ((KL<<<0)R⊕(KL<<<15)R) 
2 KE2⊕KE6||KE3⊕KE7 ((KL<<<0)R⊕(KA<<<0)R) 5 KE0⊕KE12||KE1⊕KE13 ((KL<<<0)L⊕(KA<<<15)L) 

3 KE0⊕KE8||KE1⊕KE9 ((KL<<<0)L⊕(KL<<<15)L) 6 KE2⊕KE14||KE3⊕KE15 ((KL<<<0)R⊕(KA<<<15)R) 

4.4 Key Prediction 

From the first 4 rounds attack, we can get C=(KL<<<0)⊕(KL<<<15)(C is a 128-bit value), this is enough for us to recover KL. 
Specific analysis method is as follows: 

 KL Searching Algorithm: SearchingKL(SK,C)  
 unsigned char KP[128],cTemp 

SK ← ø 
 Foreach i from 0x00 to 0x01 

{ 
KP[0] ← i 
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Foreach j from 0 to 127 
{ 

    cTemp ← (KP[(15*j)%128] ^ C[(15*j)%128])&0x01 
    If(j!=127) 

       KP[(15*(j+1))%128] ← cTemp; 
     Else if(j==127) 

{ 
      If(cTemp==KP[0]) 
      Add KP to SK

} 
} 

}  
Using Algorithm above, we can get at most 2 candidates of KL, sometimes even directly just get the unique value of KL. 

4.5 Experiment 

We have implemented our Camellia access driven cache timing attack against OPENSSL-1.0.0-beta3 running on AMD 64 
machine, and use RDTSC instruction to measure high-precision receipt timestamp obtained from the CPU's cycle counter in terms of 
clock cycles. To have a initial “clean” testing environment, we started out using OPENSSL library calls as black-box functions, 
pretending we have no access to the key. Fig.4 displays the relationship between KE0⊕KE4 key byte searching space and sample size. 
It’s obviously to see that more than 400 samples are enough to recover every key byte of KE0⊕KE4. 
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Fig.4 Average KE0⊕KE4 key byte searching space and Attack sample size 

After we get the first 4 rounds attack results in Table 4, we can analyze the encryption key with the method of Section 4.4, then 
recover the encryption key. Our experiments demonstrate that for about 500 samples are enough to recover the full Camellia-128 key. 

5 Camellia-192/256 Attack 

The encryption procedure for Camellia-192/256 is almost the same as Camellia-128, the only thing different is that instead of 
calling 18 times of F function and 2 times FL/FL-1 function, Camellia-192/256 calls 24 times of F function and 3 times FL/FL-1 
function. The key schedule for Camellia-192/256 is more complicating than Camellia-128. Methods on analysis the key schedule of 
Camellia-128 are not applicable to Camellia-192/256. Does this means Camellia-192/256 is much more secure than Camellia-128? 

The answer is No! Just because of the particular design of Camellia-192/256 key schedule, it’s quite easy to recover the key 
though a simple analysis after first 6 rounds Cache timing attack. In order to emphasize the strong applicability of our attack on 
Camellia-192/256, we take Camellia-192/256 with FL/FL-1 as our target, which is the most secure algorithm currently, and we just 
analyze the first 6 rounds of Camellia encryption and the key schedule part.  

5.1 First 6 rounds Attack 

Using methods of Section 4, after attacking the first 6 rounds of Camellia-192/256, what we can get is shown in Table 5.  

Table 5. Attack results of first 6 rounds Camellia-192/256 

Round Result Round Result 

1 KE0⊕KE4||KE1⊕KE5 ((KL<<<0)L⊕(KB<<<0)L) 4 KE2⊕KE10||KE3⊕KE11 ((KL<<<0)R⊕(KR<<<15)R) 
2 KE2⊕KE6||KE3⊕KE7 ((KL<<<0)R⊕(KB<<<0)R) 5 KE0⊕KE12|| KE1⊕KE13 ((KL<<<0)L⊕(KA<<<15)L) 

3 KE0⊕KE8||KE1⊕KE9 ((KL<<<0)L⊕(KR<<<15)L) 6 KE2⊕KE14|| KE3⊕KE15 ((KL<<<0)R⊕(KA<<<15)R) 
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5.2 Key Schedule Analysis 

From Table 5, after first 6 rounds attack, we can get (KA<<<15)⊕(KR<<<15), then recover KA⊕KR, which is also the input state of 
the 5-th F function of Camellia key schedule, as ∑5 is known, so after the 5-th and 6-th F function call, we can get the correct value KB.  

KB is also the value of (KE4, KE5, KE6, KE7), as from Table 5, we can recover KE0⊕KE4, KE1⊕KE5, KE2⊕KE6, KE3⊕KE7, so 
obviously, we can recover KE0, KE1, KE2, KE3, which is also the left 128-bit of the encryption key K, as KE0⊕KE8, KE1⊕KE9, 
KE2⊕KE10, KE3⊕KE11 is also known to us, so we can deduce the correct value of KE8, KE9, KE10, KE11, finally, KR can be recovered. 

From Section 2.3, we know that the right 64-bit key of Camellia-192 equals to the left 64-bit of KR, and the right 128-bit key of 
Camellia-256 equals to KR. As KR is known, the right 64-bit key value of Camellia-192 and right 128-bit key of Camellia-256 is also 
recovered. Combing previous left 128-bit key value, we can recover full key of Camellia-192/256. 

5.3 Experiment 

Fig.5 displays the relationship between KE0⊕KE4 key byte searching space and sample size for Camellia 128 and 192/256. It’s 
obviously to see that more than 600 samples are enough to recover every key byte of KE0⊕KE4 of Camellia-192/256, which is bigger 
than 400 of Camellia-128. 
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Fig.5 Average KE0⊕KE4 key byte searching space and Attack sample size for Camellia 128 and 192/256 

After we get the first 6 rounds attack results in Table 5, we can analyze the encryption key with the method of Section 5.2, then 
recover the encryption key. Our experiments demonstrate that for about 800-900 samples are enough to recover the full 
Camellia-192/256 key. 

6 Known Ciphertext Attack 

In previous Section 4,5, due to the relationships among known plaintext, some accessed Cache set addresses of Camellia, the 
encryption key, we provided several known plaintext Cache timing attacks on Camellia. As we all known, Camellia is a symmetric 
block cipher, so due to the relationship among known ciphertext, Camellia accessed Cache set addresses, the encryption key, it’s quite 
possible to design some known ciphertext attacks on Camellia. 

 From formula (4) in Section 3.2, we know that the input of the F function( 1α β⊕ ) XORed with an expand-key 2β is the input 

index of a single lookup table, which means that it’s possible to recover 1 2β β⊕  by single lookup table related Cache sets γ andα . 

Then the output of F function can be expressed as 1α β⊕ XORed with c, c is the result of multi table lookup contents XORed with each 

other. As to the last round of Camellia encryption, the output is the known ciphertext, but parameter c is unknown, so it’s impossible to 

recover 1 2β β⊕ . But note that due to the symmetric feature of block cipher, we can attack the Camellia decrypt procedure. So, the input 

of the decrypt procedure is the ciphertext, just the same as the plaintext in the encrypt procedure. In this section we will show some 
known ciphertext attacks on Camellia. 

6.1 Camellia-128 Attack 

If we have measured the Cache profiles of Camllia-128 decrypt procedure, according to Formula (4), during the first two rounds 
decryption procedure analysis, the ciphertext isα , we can recover KE48⊕KE44||KE49⊕KE45|| KE50⊕KE46||KE51⊕KE47 and compute 
the following rounds F function inputα , what we can get is shown in Table 6. Then, according to Section 4, if we analysis the 3rd and 

4th decryption rounds attack results, we can recover at most 2 candidates of KA, as KA⊕KL is also known to us after the first two 
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decryption rounds attack, so we can recover KL.    
 

Table 6. Attack results of first 6 rounds Camellia-128 decryption 

Round Result Round Result 

1 KE48⊕KE44||KE49⊕KE45  ((KA<<<111)L⊕(KL<<<111)L) 4 KE50⊕KE42||KE51⊕KE43  ((KA<<<111)R⊕(KA<<<94)R) 
2 KE50⊕KE46||KE51⊕KE47  ((KA<<<111)R⊕(KL<<<111)R) 5 KE48⊕KE36||KE49⊕KE37  ((KA<<<111)L⊕(KL<<<94)L) 

3 KE48⊕KE40||KE49⊕KE41  ((KA<<<111)L⊕(KA<<<94)L) 6 KE50⊕KE38||KE51⊕KE39  ((KA<<<111)L⊕(KL<<<94)L) 

6.2 Camellia-192/256 Attack 

If we measured the Cache profiles of Camllia-192/256 decrypt procedure, according to Formula (4), during the first two rounds 
decryption procedure analysis, the ciphertext isα , we can recover KE64⊕KE60||KE65⊕KE61|| KE66⊕KE62||KE67⊕KE63 and compute 
the following rounds F function inputα , what we can get is shown in Table 7. We can also recover KA⊕KR, using methods in Section 
5.2, we can get KB,KL,KR, finally recover full Camllia-192/256 key K.  

Table 7. Attack results of first 6 rounds Camellia-192/256 decryption 

Round Basic deduce result Round Basic deduce result 

1 KE64⊕KE60||KE65⊕KE61  ((KB<<<111)L⊕(KL<<<111)L) 4 KE66⊕KE58||KE67⊕KE59  ((KB<<<111)R⊕(KA<<<94)R)
2 KE66⊕KE62||KE67⊕KE63  ((KB<<<111)R⊕(KL<<<111)R) 5 KE64⊕KE52|KE65⊕KE53  ((KB<<<111)L⊕(KR<<<94)L) 

3 KE64⊕KE56||KE65⊕KE57  ((KB<<<111)L⊕(KA<<<94)L) 6 KE66⊕KE54||KE67⊕KE55  ((KB<<<111)L⊕(KR<<<94)L) 

6.3 Experiment 

We have implemented several known ciphertext attacks on Camellia-128/192/256(with and without FL/FL-1), using the analysis 
methods in Section 6.1 and 6.2, for about 500 samples are enough to recover full Camellia-128 key, and 900 samples are enough to 
recover Camellia-192/256 key, and all the analysis procedure can be done within 1 second. 

7 Remote Attack 

In local attack experiments, we started out using OPENSSL library calls as black-box functions, pretending we have no access to 
the key, there is no real interaction between the attacker program and Camellia server program. In order to demonstrate our attack’s 
strong applicability, we have implemented it into the remote environment, such as local and campus network, and it works quite 
efficiently. 

There are three programs in the remote attack experiment: the attacker (AP), the Camellia server (CSP) and the unprivileged spy 
program (SP), SP and CSP are deployed on the same computer, SP just executes simple access self data to access Cache, which is 
possible on the vast development of spy technologies.  

Step 1: AP notifies SP to access self data clearing the data in Cache, initiating the Cache into a known state 
Step 2: AP sends encryption request to CSP and trigger Camellia encryption. After encryption, CSP sends the ciphertext to AP. 
Step3: AP notifies SP to revisit Cache and find out which Cache set CSP has accessed and un-accessed. 
Step4: Using certain analysis model, AP can make some offline analysis on encryption Key.    

 

Fig.6 One sample measurement in Local Attack 

 

Fig.7 One sample measurement in remote Attack 

During the remote attacks, we find out that, due to the frequent network interaction among AP, CSP, SP, there are many sending 
and receiving packet operations to access data Cache, so there are much more noises than local experiment condition. One sample 
measurement of local attack and remote attack is shown in Fig.6 and Fig.7, the horizontal axis denotes the 512 Cache sets, and the 
vertical axis is the accessed time cycles of each Cache set by SP. It’s clear to see layout of Camellia’s 4 lookup tables (Cache set 
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461,477,493,509), measurement in remote attack has rather more noises than local attack, but we can still gather the un-accessed Cache 
sets(less time cycles ones) during Camellia encryption, which is enough for us to recover the Camellia key. Finally, using analysis 
methods in Section 4 and 5, we successfully recover full Camellia 128/192/256 key for about 3000 samples in both local and campus 
network environment. 

8 Discussions and Countermeasures 

8.1 Discussions 

In summary, the F function of the Camellia can leak information about the result of encryption key XORed with expand-key; the 
left circular rotating operation of the key schedule in Camellia has serious designing problem. 

Comparisons between different Cache timing attacks on ciphers 
We have tested Cache timing attacks on different symmetric ciphers, such as AES, SMS4 and Camellia, and proved that our attack 

model of Section 3.1 works quite efficiently. 
1 AES[41]: During the first AES round, the input index of the lookup table is the plaintext XORed with the initial key, once we have 

gathered that Cache trace profiles of AES encryption procedure, the initial key can be recovered directly. During the last AES round, 
the output of the lookup table XORed with the expand key is just the ciphertext, once we have gathered the Cache profiles, the expand 
key can be recovered, due to the invertible key expansion structure, the initial AES key can be recovered very easily. 

2 SMS4[42]: During the first SMS4 round, the input index of the lookup table is 3 plaintext bytes XORed with the 32-bit key rk0, 
once we gathered the Cache profiles, rk0 can be recovered, then we can iterated rk0 into the first round encryption and recovered the 
output of the first round, which also is the input of the second round, using the same methods, we can recover rk1, rk2, rk3, so the full 
128-bit SMS4 initial key can be recovered. During the last SMS4 round, the output of the lookup table XORed with the expand key rk31 
is just 32-bit partial ciphertext, once we have gathered the Cache profiles, then we can iterated rk31 into the last round and compute the 
input of the last round, which also is the output of the 31 round, using the same methods to analysis 29,30,31 round, we can recover 
rk28,rk29,rk30. Also, due to the invertible key expansion structure, the initial SMS4 key can be recovered very easily. 

3 Camellia: Comparably speaking, attacking Camellia is much more complicated than AES and SMS4, because unlike AES and 
SMS4, the input index of the Camellia lookup table is related with two secret variables (the encryption key XORed with expand-key), 
so we can’t recover the initial key directly and have to make some further analysis of the key schedule to recover the key. But thanks to 
the left circular rotating operation of the Camellia key schedule, it enables us to recovered full Camellia key very efficiently. 

Why and how does this attack works? 
The dis-alignment feature of Camellia S-boxes in Cache enables us to recover full secret key about Ki⊕KEj, and the simple left 

circular rotating operation of the key schedule provides us an efficient way to recover Camellia encryption key. 
1 The dis-alignment feature of Camellia S-boxes in Cache: 
Suppose O denotes the offset of the first Camellia lookup table element in the Cache block, and the Cache block size is 64 bytes, 

then we can have O=0 and O≠0 two cases. 
a O=0: In this case, each lookup table line is perfected aligned in one Cache set. Every un-accessed Cache set can eliminate 16 

high 4-hit identical and low 4-bit different but consecutive key bytes, as the correct key byte is impossible to be eliminated, so the 15 
other candidates belongs to the same Cache set as the correct key byte is also impossible to be eliminated, in totally, there will be 16 
candidates left for each key byte, which are maximal information we can get during one round analysis. 

b O≠0: Very interesting things happened in this case, when the first lookup element is dis-aligned in Cache, which also means that 
each lookup table line is related with two different but consecutive Cache sets and each Cache set is related with two different but 
consecutive lookup table lines. So every un-accessed Cache set will related two lookup table lines, the first table line related with 16-O 
indices (high 4 bit identical and low 4 bit different but consecutive), the second table line related with O indices(also high 4 bit identical 
and low 4 bit different but consecutive), so this Cache set can eliminate 16 both high 4 bit(2 values) and low 4 bit(16 values) different 
candidates. Increased sample size can enable us to eliminate other 255 wrong key byte candidates and recover the correct key byte. It’s 
easy to find out that O=7 or O =8 has the best elimination results. 

From analysis above, we can see that when O=0, it’s impossible to recover full key candidates, but fortunately, in most cases, 
O≠0(the probability is about 15/16 when δ=16), and as to Cache timing attack on Camellia, just this dis-alignment feature enabled us to 
recover secret key about Ki⊕KEj. 

2 Key schedule design problem: 
Many block ciphers used many left circular rotating operations of in the key schedule to generate the sub-keys, such as Camellia 

and ARIA[43].  
As for Camellia-128, sub-keys are generated by left rotating KL and KA, and as for Camellia-192/256, sub-keys are generated by 

left rotating KL, KR, KA, and KB. Usually, some certain sub-keys are generated by left rotating different bits of the same 128-bit variable, 
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such as kw1||kw2 (KL)and k3||k4 (KL<<<15) in Table 2. This is quite efficient for sub-key generations, but it also raises some dangerous 
problems. Once the adversary successfully recovered the XOR results of these sub-keys, it’s quite efficient to recover the encryption 
key using analysis method in Section 4.4.  

As to the specific design of Camellia encryption procedure, the FL and FL-1 functions are inserted by every 6 rounds to provide 
non-regularity between the rounds and enhance the security of the cipher. This brought some difficulties for the adversary to attack 
more rounds on Camellia with FL/FL-1, he may can only attack the first Camellia 6 rounds. But unfortunately, this was enough for 
further analysis. As to Camellia-128, after just attacking the first 4 rounds, we can find a XOR collision of left rotating different bits of 
KL , which enable us to recover the encryption key KL directly. As to Camellia-192/256, after attacking the 6 rounds, also we can not 
find any XOR collisions of the same variable (KL, KR, KA, KB), but we can recover KA⊕KR, which is just one input of the 5th F function 
in Camellia key schedule, this enabled us to directly recover KB and indirectly recover full encryption key. 

The ARIA algorithm is a Korean Standard block cipher, which is optimized for lightweight environments. It is an SPN block cipher 
with 128/192/256-bit keys, during the encryption procedure, the input index of the four lookup tables is 8-bit state variable XORed with 
one byte of the 128-bit key rkr. Using the attack model in this paper, it’s quite efficient for the adversary to recover every ARIA sub-key. 
But it’s still difficult to directly recover the encryption key. Thanks to the rotating operations of the ARIA key schedule, the 13 sub-keys 
of ARIA-128 are generated by four 128-bit variables W0, W1, W2, W3 , such as (Wi%4<<<n)⊕(W(i+1)%4 <<<m). After just attack the first 
4 rounds, the adversary can found a XOR collision of the same W0, using analysis methods in Section 4.4, the encryption key W0 can be 
recovered efficiently. 

So, the cipher designer should take the weaknesses of rotate operation into account during the designing phase of ciphers.  
Comparisons between previous remote timing attacks on ciphers 
 There are only Bernstein[7] and O. Acıiçmez[18] two cases of remote Cache based timing attacks on block cipher in the published 

papers, both of which are belonged to timing driven Cache attack on AES.  
1 Bernstein attack: The attack program and encryption server are deployed on different machines, but it is the encryption server 

that taking charge of measuring the AES encryption time and sending it back to the attack program, which is impractical in the real 
environments, so actually speaking, Bernstein attack is a type of local Cache timing attack.  

2 O. Acıiçmez remote attack: The attack program and AES server are deployed on the same machines, the attack program is taking 
charge of measuring the time between sending the plaintext to the server and receiving the ciphertext from the sever, at the condition of 
eliminating the network transmit delay, successfully recover the full AES key for about 226.66 samples, thus verify the correctness of the 
practicality of remote timing driven Cache attack. In the real condition, the remote network delay even the dithered delay noises are 
more than the encryption time, it is quite hard to measure the accurate AES encryption time. 

The access driven Cache remote timing attacks of this paper put aside the network delay problem at a certain degree, deploys the 
attack program and the encryption server at different machines in the local network environment, and deploys a spy process running 
synchronously with the Camellia server to measure the Cache information of the encryption process by executing normally self-data 
accessing operations, combines the plaintext/ciphertext information to analysis the Camellia key, finally recover the full 
Camellia-128/192/256 key efficiently, the sample size and time of our attack are much smaller. 

8.2 Countermeasures 

This section mainly talks about countermeasures against Cache timing attacks from algorithm design. Due to the weakness of F 
function and <<< left circular rotating operation, following are some advices for cipher designers to make such attacks more difficult.  

1 Use multivariable secret keys (at least 3 dimensions) as the input of the S-box lookup. 
Block cipher such as AES and SMS4, its S-box lookup input index is related with only one secret information (Ki or KEj), so 

through Cache timing analysis, the adversary can directly recover Ki or KEj. However, this doesn’t work in Camellia, as the S-box 
lookup input index of Camellia encryption procedure can leak secret information (Ki⊕KEj, full recovery) about two secret key 
variables Ki and KEj, the key schedule might leak one secret variable Ki or KEj (limited candidates). In order to get the correct Ki or 
KEj, the adversary has to analyze Camellia key schedule (Camellia-192/256), sometimes even need to attack the key schedule 
(Camellia-128). So, if Camellia using multivariable secret keys (at least 3 dimensions) as the input of the S-box lookup might be an 
efficient countermeasure to Cache timing attacks. 

2 Insert FL/FL-1 functions between F function calls more frequently. 
In Camellia, the FL and FL-1 functions inserted every 6 rounds are used to provide non-regularity between the rounds so that the 

security of the cipher is increased and these two functions are similarly constructed by logical operations including AND, OR, XOR, 
and rotations. Indeed, it’s quite effective to improve the security of Camellia against Cache timing attack. In Camellia with FL and FL-1 
functions, the adversary get nothing from the following rounds after FL and FL-1 functions, but just first 4 rounds analysis results of Ki

⊕KEj (Table 4) is enough to recover Camellia-128 key and first 6 rounds analysis results of Ki⊕KEj(Table 5) was enough to recover  
Camellia-192/256 key. 
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Note that all of the further key analysis is based on the successful attack on first 6 rounds Camellia F function analysis, if we insert 
FL/FL-1 functions more frequently between F function call, like 2 rounds instead of current 6 rounds, it would be much harder to apply 
Cache timing attacks.   

3 Use more linear logical operations besides <<< circular rotating operation, such as XOR, mix Columns etc. 
It’s quite efficient to generate the sub-key KEj by simply rotating KL, KR, KA, and KB and taking the left or right-half of them, but 

it’s not a secure way against Cache timing attacks. Once the adversary find a XOR collision about two variables generated by the same 
secret variable, it’s very easy to recover the correct secret variable. Combing the cipher algorithm design, the adversary can recover 
encryption key quite efficiently. Our experiments demonstrate that just analyzing one <<< 15 operation can narrow down the key 
searching space from2128 to 2.  

As so far rotating operation is the only direct connection between two Camellia sub-keys, if we insert more other logical 
operations like AND, OR, XOR between the generation of different round sub-keys, it will increase the difficulty for Cache timing 
analysis. As to Camellia-192/256, we specially suggest the cipher designer to rotate different n bits of KA and KR during the generation 
of the 3rd to 6th round sub-key. 

4 White-Box Cryptography.  
White-box cryptography aims to protect secret keys by embedding them into a software implementation of a block cipher. In such 

a context, it is assumed that the attacker (usually a legitimate user or malicious software) may also control the execution environment，
such as static and dynamic analysis of the implementation, altering of computation, and modification of internal variables. This is in 
contrast with the more traditional security model where the attacker is only given a black-box access (i.e., inputs/outputs) or given a 
grey-box access (use side channel information such as power consumption, and timing information) to the cryptographic algorithm 
under consideration. In White-box Cryptography model, it was mainly composed of the following part: transform the cipher into a 
network of key dependant lookup tables, randomized behavior of all network nodes, extend the cryptographic border.  

Chow et al. introduce this idea and propose a white box implementation of DES in [44] by interleaving affine transformations and 
using de-linearization techniques. An improvement is explained in [45]. An implementation of AES is also given in [46] by representing 
it with a set of key-dependent look-up tables, also an improvement is explained in [47]. All of the implementation above (DES 
represents Feistel structure, AES represents SPN structure.) can prove that this idea can efficient protect secret keys being analyzed by 
hidden encryption key into the S-box of a block cipher, thus can defend almost all of the current side channel analysis on block ciphers. 
But although the security improves, the white-box implementations make a program much larger and slower. The AES implementation 
of Daemen and Rijmen requires 4352 bytes for lookup tables, thus the expected increase in size is about 177×. The performance 
slowdown is approximately 55× compared to a normal implementation of AES in [46]. None of the published papers have tried to 
implement white-box cryptography on Camellia so far, so it’s hopeful to design new white-box cryptography on Camellia to secure 
against Cache timing attacks in the nearby future. 

9 Conclusion 

This paper makes some researches on access driven Cache timing attacks on the most secure block cipher Camellia, the results 
demonstrate that Camellia is facing serious threats from Cache timing attacks. First, Camellia has been widespread as the dominate 
block cipher in both Japan and European, so the effect of these attacks are wide and deeply; second, the adversary needn’t to gain the 
encryption platform to physically measure the leaked side channel information, so it has strong applicability under remote environment 
such as local network, campus network, even the internet network; last but not the least, this attack is applicable to all software 
implementation for “Cache-Memory” structure of Computer equipment, thus can threaten the security of server, desktop, embedded 
Operating System. So, we should put strong concerns to this type of attack. 

In this paper, we discover that the fast implementation of frequency S-box lookup operations in F function and left circular rotating 
operation of the key schedule have serious designing problem, it’s very easy to be used by the adversary to implement the attack and 
recover full encryption key. Note that access driven Cache timing attacks on Camellia is decided by the fast implementation of 
frequency S-box lookup operations and the intrinsic mechanism of Cache, so it’s very hard to defend these attacks. Different from 
traditionally countermeasures by modifying cipher hardware and OS implementation environments, we point that the cipher designer 
should burden more responsibilities due to the countermeasure cost and cipher applicability, provide several advices to the cipher 
designer about how to make such attacks more difficult. But all the countermeasures has to be at the cost of sacrifice the encryption 
speed, so how to make better balance between efficiency and speed are the big challenges for cryptographic systems.  
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