
ANALYSIS OF THE DVB
COMMON SCRAMBLING ALGORITHM

Ralf-Philipp Weinmann and Kai Wirt
Technical University of Darmstadt
Department of Computer Science
Darmstadt, Germany
{weinmann,kwirt}@cdc.informatik.tu-darmstadt.de

Abstract The Common Scrambling Algorithm (CSA) is used to encrypt streams
of video data in the Digital Video Broadcasting (DVB) system. The
algorithm cascades a stream and a block cipher, apparently for a larger
security margin. In this paper we set out to analyze the block cipher and
the stream cipher separately and give an overview of how they interact
with each other. We present a practical attack on the stream cipher.
Research on the block cipher so far indicates it to be resistant against
linear and algebraic cryptanalysis as well as simple slide attacks.

Keywords: Block cipher, stream cipher, cryptanalysis, DVB, pay-tv

1. Introduction
The DVB Common Scrambling Algorithm is an ETSI-specified algo-

rithm for securing MPEG-2 transport streams such as those used for
digitally transmitted Pay-TV. It was adopted by the DVB consortium
in May 1994, the exact origin and date of the design is unclear. Until
2002, the algorithm was only available under a Non-Disclosure Agree-
ment from an ETSI custodian. This NDA disallowed and still disallows
licensees to implement the algorithm in software for “security reasons”.
The little information that was then available to the public is contained
in an ETSI Technical Report [European Telecommunications Standards
Institute, 1996] and patent applications [Bewick, 1998], [Watts et al.,
1998]. This changed in the Fall of 2002, when a Windows program
called FreeDec appeared which implemented the CSA in software. It
was quickly reverse–engineered and details were disseminated on a web
site [Pseudonymous authors, 2003].

For keying the CSA, so called control words are used. These control
words are provided by a conditional access mechanism, which gener-
ates them from encrypted control messages embedded in the transport
stream. Conditional access mechanisms vary between broadcasters and
can be more easily changed than the actual scrambling algorithm. Ex-

196 Ralf-Philipp Weinmann and Kai Wirt

amples for commonly used conditional access mechanisms are Irdeto,
Betacrypt, Nagravision, CryptoWorks etc. A new common key is usu-
ally issued every 10–120 seconds. The great relevance of CSA lies in the
fact that every encrypted digital Pay-TV transmission in Europe is se-
cured using this algorithm. A practical break of CSA would thus affect
all broadcasters and could not be remedied by changing the conditional
access mechanism.

The scrambling algorithm can be seen as the layering of two cryp-
tographic primitives: a 64-bit block cipher and a stream cipher. Both
ciphers employ a common key; the stream cipher uses an additional
64-bit nonce, the origin of which we will discuss later.

In this paper we investigate the two ciphers independently and show
weaknesses. Although we do not present a break of the scrambling al-
gorithm we present a known-plaintext attack on the stream cipher and
show preliminary results on the block cipher.

The rest of this paper is organized as follows: Section 2 defines the
notation used. In Section 3 we describe the two ciphers and how they
are combined in the CSA. Our attack on the stream cipher as well
as a presentation of properties of the block cipher follow in Sections 4
respectively 5. Section 6 concludes.

2. Definitions
In the rest of this paper we use the following notation:

K the common key. A 64 bit key used for both the stream and the
block cipher

ki denotes the i-th bit of K
KE denotes the expanded key which is derived through the key schedule

of the block cipher
SBi is the i-th 8-byte block of the scrambled data stream

SB0 is used as nonce in the stream cipher
CBi is the i-th 8-byte block of stream cipher output
IBi intermediate blocks. See Figure 3.1 for details.
DBi is the i-th 8-byte block of descrambled data
R denotes the residue and
SR is used for the scrambled residue
IV an initialization vector. Always equals the zero block.
rol bitwise rotation to the left by one bit
|| denotes concatenation
ti state of the stream cipher after i clocks

t−31 is the starting state, t0 the state after the initialization
IA is an additional input for the stream cipher generated from the nonce
lw denotes the cycle length, i.e. the smallest number j − i for which tj = ti

ls is the length of a small cycle, i.e. the smallest number j − i for which
the feedback shift register 1 has the same value in tj and ti

Analysis of the DVB Common Scrambling Algorithm 197

Figure 1. Combination of block- and stream cipher.

3. Description

3.1 Cascading the Block and the Stream Cipher
The scrambling algorithm can be seen as a cascade of a block cipher

and a stream cipher. Both ciphers use the same 64-bit key K, which
is called the common key. We will now describe how the block and
the stream cipher are combined. Figure 3.1 depicts the descrambling
process.

For scrambling the payload of an m-byte packet, it is divided into
blocks (DBi) of 8 bytes each. If an adaption field was used, it is possible
that the length of the packet is not a multiple of 8 bytes. Thus the last
block is n < 8 bytes long and shall be called residue.

The sequence of 8-byte blocks is encrypted in reverse order with the
block cipher in CBC mode, whereas the residue is left untouched. The
last output of the chain IB0 is then used as a nonce for the stream
cipher. The first m bytes of keystream generated by the stream cipher
are XORed to the encrypted blocks (IBi)i≥1 followed by the residue.

3.2 The Stream Cipher
3.2.1 Overview. The stream cipher is built of two feedback-
shift-registers and a combiner with memory. The overall layout is shown
in Figure 3.2.1. The registers p, q and c are bit registers. All other
registers are 4 bit wide.

The stream cipher operates in one of two modes. The first one is the
initialization mode in which the starting state of the cipher is set up.
The second one is the generating mode in which the cipher produces two
pseudo-random bits per clock cycle.

198 Ralf-Philipp Weinmann and Kai Wirt

Figure 2. The stream cipher.

3.2.2 Key Schedule. The cipher uses the common key K and
the first scrambled block of the transport stream SB0 as a nonce to
set up the initial state. At first all registers of the cipher are set to 0.
Then the common key K = k0, . . . , k63 is loaded into the shift registers
A := a0,j , . . . , a9,j and B := b0,j , . . . , b9,j with 0 ≤ j ≤ 3 according to
the following rule:

ai,j =
{

k4·i+j i ≤ 7
0 else

bi,j =
{

k32+4·i+j i ≤ 7
0 else

In the following ai and bi denote the 20 4-bit registers ai,0, . . . , ai,3 and
bi,0, . . . , bi,3 respectively.

Hereafter the cipher is in initialization mode. It uses SB0 and the
feedback register D as input and performs 32 clock cycles to calculate
the starting state. The inputs for feedback shift registers 1 and 2 are
derived from SB0:

(IA, IB) :=
{

(SB0 div 24, SB0 mod 24) in state ti, i ∈ {−31,−29, . . .}
(SB0 mod 24, SB0 div 24) else

Thus in every odd cycle number IA is the high nibble of SB0 whereas
IB is the low nibble. In even cycles the nibbles are used the other way

Analysis of the DVB Common Scrambling Algorithm 199

round. See below for the equations which update the internal cipher
state.

3.2.3 Generation Mode.

Feedback shift register 1. The feedback a′0 of shift register A is
calculated as

a′0 :=
{

a9 ⊕X if not in init mode
a9 ⊕X ⊕D ⊕ IA else

The next value A′ for register A is then given by

A′ := (a′0, a0, . . . , a8)

Feedback shift register 2. The feedback b′0 of shift register B is
given by

b′0 :=
{

b6 ⊕ b9 ⊕ Y if not in init mode
b6 ⊕ b9 ⊕ Y ⊕ IB else

and the new value B′ for B is

B′ :=
{

(b′0, b0, . . . , b8) p = 0
(rol(b′0), b0, . . . , b8) else

Other registers. New values for the other registers, namely X, Y ,
Z, p and q are derived from seven 5 × 2 S-Boxes. Table 1 shows which
bits from shift-register A are used as input for the S-Boxes and how the
new register values are constructed. The S-Boxes itself are shown in
Table 4. Table 6 gives an algebraic description of the S-Boxes, with a
being the most significant input bit and e the least significant.

Combiner. The stream cipher uses a combiner with memory to
calculate two bits of output per clock. The memory of the combiner
consists of registers E, F and c. In each cycle a new state for these
registers is determined according to

(E,F)′ :=
{

(F,E) q = 0
(F,E + Z + c mod 24) else

c is unchanged if q = 0. Otherwise it is 1 if E + Z + c ≥ 24 and 0 else.

The output of the generator is calculated by D2⊕D3||D0⊕D1 where
D := E ⊕ Z ⊕Bout with Bout given by

Bout
3 := b2,0 ⊕ b5,1 ⊕ b6,2 ⊕ b8,3

Bout
2 := b5,0 ⊕ b7,1 ⊕ b2,3 ⊕ b3,2

Bout
1 := b4,3 ⊕ b7,2 ⊕ b3,0 ⊕ b4,1

Bout
0 := b8,2 ⊕ b5,3 ⊕ b2,1 ⊕ b7,0

200 Ralf-Philipp Weinmann and Kai Wirt

3.3 The Block Cipher
CSA employs an iterated block cipher that operates bytewise on 64-

bit blocks of data and uses a 64-bit key, the common key K. Each round
of the cipher employs the same round transformation φ, which takes an
8-byte vector along with a single byte of the expanded key as input
and outputs an 8-byte vector. This round transformation is applied 56
times. One could also lump together 8 successive rounds of the cipher
into a round function φ′ and describe a 7-round cipher which uses 64-
bit subkeys; however we feel that the description we give below is more
natural and easier to comprehend.

3.3.1 The Key Schedule. Let ρ be the bit permutation on
64-bit strings which is defined in Table 2. The expanded key KE =
(kE

0 , . . . , kE
447) consists of a total of 448 bits which are recursively com-

puted as follows:

kE
0,...,63 = k0,...,63

kE
64i,...,64i+63 = ρ(kE

64(i−1),...,64i−1)⊕ 0x0i0i0i0i0i0i0i0i 1 ≤ i ≤ 6

where the expression 0x0i0i0i0i0i0i0i0i is to be interpreted as a hex-
adecimal constant. We note that the key schedule is entirely GF (2)-
linear.

3.3.2 The Round Function. At the core of the round trans-
formation φ are the nonlinear functions f and f ′. These are distinct

Table 1. S-Box input and generation of new register values.

S1 a3,0 a0,2 a5,1 a6,3 a8,0

S2 a1,1 a2,2 a5,3 a6,0 a8,1

S3 a0,3 a1,0 a4,1 a4,3 a5,2

S4 a2,3 a0,1 a1,3 a3,2 a7,0

S5 a4,2 a3,2 a5,0 a7,1 a8,2

S6 a2,1 a3,1 a4,0 a6,2 a8,3

S7 a1,2 a2,0 a6,1 a7,2 a7,3

X S4,0 S3,0 S2,1 S1,1

Y S6,0 S5,0 S4,1 S3,1

Z S2,0 S1,0 S6,1 S5,1

p S7,1

q S7,0

Table 2. Key bit permutation.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ρ(i) 17 35 8 6 41 48 28 20 27 53 61 49 18 32 58 63

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
ρ(i) 23 19 36 38 1 52 26 0 33 3 12 13 56 39 25 40

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

ρ(i) 50 34 51 11 21 47 29 57 44 30 7 24 22 46 60 16

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
ρ(i) 59 4 55 42 10 5 9 43 31 62 45 14 2 37 15 54

Analysis of the DVB Common Scrambling Algorithm 201

permutations on the set of all byte values and can be seen as the S-
Boxes of the cipher. Both permutations have maximum cycle length
and are related to each other by a bit permutation σ, i.e. f ′ = σ ◦ f .
This bit permutation maps bit 0 to 1, bit 1 to 7, bit 2 to 5, bit 3 to 4,
bit 4 to 2, bit 5 to 6, bit 6 to 0 and bit 7 to 3. See Table 5 for the actual
values described by f .

Let S = (s0, . . . , s7) be the vector of bytes representing the internal
state of the block cipher in an arbitrary round. The function φ taking
the internal state S from round i to round i + 1 can then be defined as

φ(s0, . . . , s7, k) = (s1, s2 ⊕ s0, s3 ⊕ s0, s4 ⊕ s0,

s5, s6 ⊕ f ′(k ⊕ s7), s7, s0 ⊕ f(k ⊕ s7))

whereas for decrypting a block of ciphertext we need the inverse function:

φ−1(s0, . . . , s7, k) = (s7 ⊕ f(s6 ⊕ k), s0,

s7 ⊕ s1 ⊕ f(s6 ⊕ k), s7 ⊕ s2 ⊕ f(s6 ⊕ k),
s7 ⊕ s3 ⊕ f(s6 ⊕ k), s4, s5 ⊕ f ′(s6 ⊕ k), s6)

3.3.3 Encryption/Decryption. Encrypting a plaintext P =
(p0, . . . , p7) is accomplished by

S0 = P

Sr = φ(Sr−1, (kE
8r, . . . , k

E
8r+7)) 1 ≤ r ≤ 56

C = S56

which yields the ciphertext C = (c0, . . . , c7). For decrypting this cipher-
text the following sequence of operations needs to be carried out:

S0 = C

Sr = φ(Sr−1, (kE
448−8r, . . . , k

E
455−8r)) 1 ≤ r ≤ 56

P = S56

4. Analysis of the Stream Cipher
In the following we denote with t0 the stream cipher’s state after the

initialization. That means t−31 is the initial state, in which the common
key is loaded in the registers A and B respectively. Given this notation
we define a full cycle to be the smallest number lw := j − i for which
the values of all registers in state ti are equal to the values in tj . Also
we define a small cycle to be the smallest number ls := j − i when the
values of X and A in state ti are equal to the values in tj .

4.1 Observation
The CSA stream cipher’s state consists of 103 bits. This means that

the maximum period length is 2103. For cryptographic purposes, one

202 Ralf-Philipp Weinmann and Kai Wirt

would expect the cycle to go through a minimum of 280 states. Using
Floyd’s cycle-finding algorithm however, we observed that after a rela-
tively short preperiod there exist only a few different cycle lengths for
different key/nonce combinations; all of these have a length of lw < 109,
which of course is much smaller than 280. When comparing the set
of states in several cycles with the same length which where generated
by different key/nonce pairs, one notices that these are disjunct; many
different cycles with length lw exist.

On the other hand, taking only A and X in account shows that if
two cycles have the same length lw then ls is equal too. Moreover the
sequence of states in feedback-shift-register 1 is equal. This means that
if lw is equal for two cycles then the registers A and X for these cycles
are going through the same values.

We conducted a total of 105 experiments with random key/nonce pairs
to determine the most probable period lengths for the state transition
function operating on register A. Table 3 shows some small cycle lengths
ls together with the number of times n(ls) we observed a cycle of this
length in our test and a(ls) the average length of the pre-period for a
given cycle length.

Table 3. Probability distribution for small cycles.

n(ls) ls a(ls)

36106 22778 152854.6
24196 97494 83098.3
18054 121992 27726.2
15171 42604 65556.8
3244 25802 17643.8
1495 108 21051.6
131 2391 3138.5

In 1.6% of all cases we observed cycle lengths not listed in the above
table. For each of these the probability of occurrence must be lower than
0.2%. This observation leads to the following attack:

1: Calculate a table T with the states of the small cycles
2: for every state in T do
3: Test if the state is correct
4: Reconstruct the remaining registers
5: end for
It remains to show how one can determine if the state is correct and

how the remaining registers can be reconstructed.

4.2 Finding the Correct Value for FSR1
The trivial method of finding the correct value for FSR1 is to simply

try all possible values. That means that one searches through all states
which belong to one of the small cycles. Summing up the number of

Analysis of the DVB Common Scrambling Algorithm 203

states in Table 3 shows that in 98.4% of all cases testing 313 169 possi-
bilities is sufficient; this is far less than the 244 possible values for A and
X.

4.3 Reconstructing the Remaining Registers
The stream cipher’s output is calculated by XORing Z, E and Bout.

Since we can now consider A to be known, Z is fully determined. For
all possible 29 values of E, F and c do the following:
Consider all bits of B at clock cycle t as variables with values in GF (2).
Generate a system of equations describing the two output bits at clock
cycle t + k as linear equations of bits of these variables. This system is
linear since the additional inputs for the feedback shift register are fully
determined by A and hence are known. In other words: for every state
of A a system of linear equations that fully describes B with respect to
Bout exists. Therefore this system can be efficiently solved using Gaus-
sian elimination. If the system is inconsistent then the guess for E, F
and c was wrong and has to be altered.

The last step of the attack is to determine which of the possible so-
lutions for the linear equations system is the correct one. This has to
be done because different values for E, F and c may lead to a solution
of the system. The correct value can be determined simply by running
the keystream generator with the calculated state and checking if the
output corresponds to the actual output of the generator.

4.4 Results
Some of the generated equations are linearly dependent. Experimen-

tally we derived that for finding a unique solution to the system described
above, 60 equations are sufficient.

For carrying out the attack one thus needs to solve approximately
219 · 29 = 228 systems of linear equations, each of which contains 60
equations in 40 unknowns. Experiments showed that this can be done in
less than an hour on a 1.25 GHz PowerPC G4. We stress that our attack
leaves much room for improvement. It might be possible to increase our
chances at guessing the correct value for A from statistical deviation in
the output of the stream cipher. But already our unoptimized version
shows that the stream cipher can be broken in a very short time. Also,
this attack is well suited to parallelization.

5. Analysis of the Block Cipher
We note that the round function φ is a weak permutation. Given

the inputs x1, x2 and outputs y1 = φ(x1, k) and y2 = φ(x2, k) of a
single round it is trivial to determine the round subkey k. The key

204 Ralf-Philipp Weinmann and Kai Wirt

schedule however seems to make the cipher resistant against slide attacks
[Biryukov and Wagner, 1999].

5.1 Linear Approximation of the S-Boxes
The maximum bias of both S-Boxes is 17

128 . Trying to find a linear path
through several rounds of the cipher we see that the number of active
S-Boxes in the path increases exponentially in the number of rounds.
Because of this fact and the high number of rounds, the authors believe
that classical linear cryptanalysis poses not threat to the cipher.

5.2 Polynomial Interpolation of the S-Boxes
We have interpolated the S-Boxes as polynomials over fields GF (28) =

GF (2)[X]/m(X) for all m ∈ GF (2)[X] with deg(m) = 8 and m ir-
reducible. The resulting polynomials are all dense and of maximum
degree. Interpolating bit traces of the S-Boxes results in polynomials
consisting of 117–137 terms. Two of them are of degree 8, the other 6
of degree 7.

Thus we conclude that both representations are not useful for alge-
braic cryptanalysis of the cipher.

6. Conclusion
In this paper we described the Common Scrambling Algorithm and

presented an analysis of the underlying stream and block cipher parts.
We showed that the stream cipher is weak and can be efficiently broken.
We also pointed out some properties of the block cipher which even-
tually could be used in an successful attack. However, since the block
cipher uses 56 rounds we believe that such an attack would have to use
sophisticated techniques.

Cryptanalyzing both stream and block cipher at the same time seems
to be a task too daunting to attempt. Finding special cases where plain-
text and corresponding ciphertext can be obtained that is encrypted with
only one of the ciphers facilitates easier cryptanalysis. For the stream
cipher these are packets with a residue. A sufficiently long adaption field
on the other hand can lead to packets which are only protected by the
block cipher.

We believe that extending the attack on the stream cipher to a key
recovery is not a trivial task. Since the state update function of the
stream cipher is irreversible and nonlinear, the only option we see at
this point for recovering the key is to solve a large system of polynomial
equations for different nonces and key streams. The nonlinear equations
in this system are of the form seen in Table 6.

There are various directions for future research on these topics. First
of all the attack presented offers room for further improvements like the
reduction of the necessary register guesses. Investigating how to recover

Analysis of the DVB Common Scrambling Algorithm 205

the Common Key K from a known state of the stream cipher is another
logical step. Finally, the block cipher needs more scrutiny.

7. Appendix

Table 4. S-Boxes of the stream cipher.

Input S1 S2 S3 S4 S5 S6 S7

00000 10 11 10 11 10 00 00

00001 00 01 00 01 00 01 11

00010 01 00 01 10 00 10 10

00011 01 10 10 11 01 11 10

00100 10 10 10 00 11 01 11

00101 11 11 11 10 10 10 00

00110 11 11 11 01 11 10 00

00111 00 00 01 10 10 00 01

01000 11 01 01 01 00 00 11

01001 10 11 01 10 01 01 00

01010 10 10 00 00 11 11 01

01011 00 01 11 01 11 00 11

01100 01 00 11 11 01 10 01

01101 01 00 00 00 00 11 10

01110 00 01 10 00 10 01 10

01111 11 10 00 11 01 11 01

Input S1 S2 S3 S4 S5 S6 S7

10000 00 11 01 01 10 10 01

10001 11 01 11 00 11 11 00

10010 11 00 00 11 10 00 11

10011 00 11 01 01 00 10 11

10100 10 11 11 10 00 11 00

10101 10 10 00 11 11 00 01

10110 01 00 10 00 01 01 01

10111 01 10 10 11 01 01 10

11000 10 00 10 00 01 10 10

11001 10 00 00 11 00 01 11

11010 00 01 01 10 11 01 01

11011 11 10 10 00 10 10 00

11100 01 10 00 01 11 00 10

11101 01 01 11 10 01 11 11

11110 11 11 11 10 00 11 00

11111 00 01 01 01 10 00 10

Table 5. S-Box of the block cipher. Output arranged row-wise; lower nibble on
horizonal, upper on vertical.

0x000x010x020x030x040x050x060x070x080x090x0A0x0B0x0C0x0D0x0E0x0F

0x00 0x3A0xEA0x680xFE0x330xE90x880x1A0x830xCF0xE10x7F0xBA0xE20x380x12

0x01 0xE80x270x610x950x0C0x360xE50x700xA20x060x820x7C0x170xA30x260x49

0x02 0xBE0x7A0x6D0x470xC10x510x8F0xF30xCC0x5B0x670xBD0xCD0x180x080xC9

0x03 0xFF0x690xEF0x030x4E0x480x4A0x840x3F0xB40x100x040xDC0xF50x5C0xC6

0x04 0x160xAB0xAC0x4C0xF10x6A0x2F0x3C0x3B0xD40xD50x940xD00xC40x630x62

0x05 0x710xA10xF90x4F0x2E0xAA0xC50x560xE30x390x930xCE0x650x640xE40x58

0x06 0x6C0x190x420x790xDD0xEE0x960xF60x8A0xEC0x1E0x850x530x450xDE0xBB

0x07 0x7E0x0A0x9A0x130x2A0x9D0xC20x5E0x5A0x1F0x320x350x9C0xA80x730x30

0x08 0x290x3D0xE70x920x870x1B0x2B0x4B0xA50x570x970x400x150xE60xBC0x0E

0x09 0xEB0xC30x340x2D0xB80x440x250xA40x1C0xC70x230xED0x900x6E0x500x00

0x0A 0x990x9E0x4D0xD90xDA0x8D0x6F0x5F0x3E0xD70x210x740x860xDF0x6B0x05

0x0B 0x8E0x5D0x370x110xD20x280x750xD60xA70x770x240xBF0xF00xB00x020xB7

0x0C 0xF80xFC0x810x090xB10x010x760x910x7D0x0F0xC80xA00xF20xCB0x780x60

0x0D 0xD10xF70xE00xB50x980x220xB30x200x1D0xA60xDB0x7B0x590x9F0xAE0x31

0x0E 0xFB0xD30xB60xCA0x430x720x070xF40xD80x410x140x550x0D0x540x8B0xB9

0x0F 0xAD0x460x0B0xAF0x800x520x2C0xFA0x8C0x890x660xFD0xB20xA90x9B0xC0

206 Ralf-Philipp Weinmann and Kai Wirt

Table 6. Algebraic description of the S-Boxes used in the stream cipher.

S1,0 = abce + abc + abd + bde + ab + ae + be + ce + b + d

S1,1 = abcd + abde + abc + abd + acd + ade + bcd + bce +

ab + ac + bc + bd + be + cd + ce + de + a + d + e + 1

S2,0 = abce + abde + ade + bce + bde + ab + ac + ce + c + d + 1

S2,1 = abde + abc + abd + abe + acd + cde + cd + ce + b + d + e + 1

S3,0 = ce + de + a + b + d

S3,1 = abcd + acde + abe + ac + abc + acd + ace + ade + bcd + bde +

cde + ad + bc + bd + be + cd + ce + a + b + d + e + 1

S4,0 = abcd + abde + acde + abc + abe + bde + ab + ad + ae + bc +

be + de + c + d + 1

S4,1 = abcd + abde + acde + abc + abe + bcd + cde + ad + ab + ae +

de + a + b + c + e + 1

S5,0 = abde + acde + acd + abe + abd + ace + bce + cde + ab + ac +

ae + bd + be + ce + de + c

S5,1 = abcd + abce + acde + abd + abe + acd + bcd + bce +

bde + cde + ac + ad + ae + be + cd + ce + de + b + d + e + 1

S6,0 = abcd + abde + acde + acd + ade + bcd + cde + bc + bd + cd +

c + e

S6,1 = abe + ade + bce + bde + bc + ce + a + d

S7,0 = abde + abd + cde + bc + cd + de + a + b + c + e

S7,1 = abcd + abdebc + acde + acd + ade + bde + ac + ae + de +

b + c + d + e

References

[Bewick, 1998] Bewick, Simon (1998). Descrambling DVB data according to ETSI
common scrambling specification. UK Patent Applications GB2322994A /
GB2322995A.

[Biryukov and Wagner, 1999] Biryukov, Alex and Wagner, David (1999). Slide at-
tacks. In Knudsen, Lars, editor, Fast Software Encryption: 6th International Work-
shop, FSE’99, Rome, Italy, March 1999. Proceedings, volume 1663 of Lecture Notes
in Computer Science, pages 245–. Springer-Verlag Heidelberg.

[European Telecommunications Standards Institute, 1996] European Telecommuni-
cations Standards Institute (1996). ETSI Technical Report 289: Support for use
of scrambling and Conditional Access (CA) within digital broadcasting systems.

[Golomb, 1967] Golomb, Solomon W. (1967). Shift Register Sequences. Holden-Day
San Francisco.

[Pseudonymous authors, 2003] Pseudonymous authors (2003). CSA – known facts
and speculations. http://csa.irde.to.

[Rueppel, 1986] Rueppel, Rainer A. (1986). Analysis and design of stream ciphers.
Springer-Verlag New York, Inc.

[Watts et al., 1998] Watts, Davies Donald, Ashley, Rix Simon Paul, and Jacobus,
Kuehn Gideon (1998). System and apparatus for blockwise encryption and de-
cryption of data. US Patent Application US5799089.

