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Abstract

We develop a constant time transposition “oracle” for the set of perfect elimination orderings
of chordal graphs. Using this oracle, we can generate a Gray code of all perfect elimination
orderings in constant amortized time using known results about antimatroids. Using clique trees,
we show how the initialization of the algorithm can be performed in linear time. We also develop
two new characterizations of perfect elimination orderings: one in terms of chordless paths, and
the other in terms of minimal u-v separators.
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1. Introduction

Chordal graphs are an important class of graphs. An excellent background on chordal
graphs is given by Golumbic [8]. One of their fundamental characterizations is that
a graph is chordal if and only if it has a perfect elimination ordering (PEO). In this
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paper we consider the problem of eGciently exhaustively listing all of the PEOs of a
given input graph as a combinatorial Gray code; we list them so that successive PEOs
diHer only by one or two transpositions of adjacent elements. The key to our algorithm
is an eGcient way of determining whether any particular adjacent transposition in a
given PEO results in another PEO. In order to justify our algorithm we prove new
characterizations of chordal graphs and correct an error in the literature. To initialize our
algorithm we develop a linear time algorithm for Inding a PEO that can be optimally
scheduled on two processors.
Let G=(V; E) be a connected undirected graph where V is the set of vertices and

E is the set of edges. A graph G is said to be chordal if every cycle of length 4 or
more contains a chord (an edge between two non-consecutive vertices in the cycle).
We use N (v) to denote the neighborhood of the vertex v, i.e., the set of all vertices

u adjacent to v. For A⊆V , we let G(A) denote the subgraph of G induced by A. A
complete induced subgraph is called a clique. A vertex v is simplicial if G(N (v)) is a
clique. The following result is from Dirac [5]:

Theorem 1. Every chordal graph G which is not a clique contains at least two non-
adjacent simplicial vertices.

A bijection f : {1; 2; : : : ; n}→V with |V |= n is called an ordering of G. We let f−1

denote the inverse of f and thus f−1(v) denotes the position in the ordering assigned
to the vertex v. The set Nf(v) is deIned to be the set of all neighbors u of v such
that f−1(u)¿f−1(v), or in other words, all neighbors of v that have a higher position
in the ordering f. Using this notation, an ordering f is called a perfect elimination
ordering (PEO) if for each v∈V , Nf(v) is a clique.
Observe that an arbitrary graph may not have a PEO. The following theorem of

Fulkerson and Gross [6] characterizes the graphs which have PEOs.

Theorem 2. A graph G is chordal if and only if it has a PEO.

A single PEO of a chordal graph G can be found in linear time using either the
LexBFS algorithm [13] or the maximum cardinality search (MCS) algorithm [16].
However, neither of these algorithms can be used to produce every PEO for a given
chordal graph. Using the deInition, it is possible to generate all PEOs by successively
removing simplicial vertices. Such an algorithm is outlined in Fig. 1 where the initial
call is PEO(1; G). The diGculty of this algorithm is in maintaining a list of the simpli-
cial vertices. It does not seem possible to update such a list in time faster than 
(�)
(where � is the maximum degree of any vertex in V ) since it is possible to create up
to � new simplicial vertices when a vertex is removed from the graph.
Another algorithm for generating all PEOs is outlined by Shier [14]. This algorithm

follows the approaches of the LexBFS and MCS algorithms by Inding the simplicial
vertices in reverse order. Implementation details are not given for the algorithm, but
again it does not seem possible to update the simplicial vertices in time faster than

(�). Thus, until this paper, it was not known how to generate all PEOs in time faster
than 
(�) per PEO.
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———————————————————————————
procedure PEO (t : integer, G : graph);
begin

if t¿n then PrintIt(f);
else for each simplicial vertex v∈G do begin

f(t) := v;
PEO(t + 1; G − v);

end; end;
———————————————————————————

Fig. 1. A naOPve algorithm for generating all PEOs.

The ultimate goal of an algorithm which produces an exhaustive list of objects,
such as PEOs, is one whose total computation is proportional to the number of objects
produced. Such algorithms are said to be CAT since each object is generated in constant
amortized time. When analyzing exhaustive listing algorithms, the correct measure of
computation is the total amount of data structure change, not including the time taken
to print out the object. This is because typical applications only process the part of the
object that has undergone some change. As the two algorithms outlined previously for
generating all PEOs of a given chordal graph G do not achieve this goal, we present
an alternative approach.
An antimatroid is a set system F that is hereditary and closed under union, i.e.,

(a) for each non-empty S ∈F there is an x∈ S such that S\{x}∈F, and (b) for each
pair S; T ∈F we have S ∪T ∈F. The PEOs of a chordal graph form an antimatroid
by taking F to be the set of all sets of vertices that occur in a preIx of a PEO.
The PEOs are the so-called basic words of that antimatroid. Further information about
antimatroids may be found in the books of Korte et al. [9] and BjOorner and Ziegler [1].
In [9] our antimatroid is referred to as the “vertex shelling of a triangulated graph.”
The main result of this paper is the development of a constant time transposition

oracle which answers the following question “Is �jf a PEO given that f is a PEO?”. By
�j we denote the transposition (j; j+1). The notation �jf is the result of the action of
the permutation �j on the indices of f. In other words, the ordering �jf is the ordering
f with the adjacent values f(j) and f(j+1) transposed. That is, �jf(j)=f(j+1) and
�jf(j+1)=f(j), and for all other i∈ 1; : : : ; n, �jf(i)=f(i). Since the PEOs of a
chordal graph are the basic words of a language antimatroid, we can use this oracle
along with an antimatroid result from [11] to generate all PEOs of a chordal graph
in constant amortized time using the algorithm GenLE(i) from [12]. In addition, each
successive PEO diHers by at most 2 adjacent transpositions. Such algorithms are called
Gray codes since each successive object diHers by a constant amount. The initialization
of our algorithm requires an initial PEO obtained by removing two simplicial vertices
at a time. Using clique trees, we show how this can be done in linear time in Section 4.
After we describe the constant time transposition oracle in Section 2, the generation

algorithm in Section 3, and an improved initialization in Section 4, we present two
new characterizations of perfect elimination orderings: the Irst is in terms of chordless
paths and the second is in terms of minimal u-v separators. Extensive connections
between minimal vertex separators and PEOs are shown by Kumar and Madhavan
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[10], including a linear time algorithm to identify the minimal vertex separators of a
chordal graph. Minimal vertex separators are also used by Simon to prove that the
LexBFS algorithm is correct [15]. However, in his discussion, a false claim is made
that the second characterization we present does not hold for every PEO, in particular
for some PEOs resulting from the MCS algorithm.

2. A constant time oracle

In this section we show how the question “Is �jf a PEO (given that f is a PEO)?”
can be answered in constant time as long as we know the values |Nf(v)| for each vertex
v∈V . Using this oracle, we can develop a CAT Gray code algorithm for generating all
PEOs using the results from [12,11]. Details of the algorithm are given in the following
section.
Assuming that f is an ordering of a chordal graph G, we let Nf(j; x) denote the set

of all v∈N (x) such that f−1(v)¿j. In other words Nf(j; x) contains all the neighbors
of x that are in a position higher than j in the ordering f.
The following lemma is used to prove the main theorem of this section.

Lemma 1. If f is a PEO of a chordal graph where x=f(j) and y=f(j + 1) are
adjacent vertices, then Nf(j + 1; x)⊆Nf(j + 1; y).

Proof. Since Nf(x)= {y}∪Nf(j + 1; x) is a clique, y is adjacent to every vertex in
Nf(j + 1; x), which implies Nf(j + 1; x)⊆Nf(j + 1; y).

Theorem 3. Let f be a PEO of a chordal graph G where x=f(j) and y=f(j+1).
Then �jf is a PEO of G if and only if x and y are not adjacent or Nf(j+1; x)=
Nf(j+1; y).

Proof. Since f is a PEO, for every v∈V; Nf(v) is a clique. This implies that f′ = �jf
is a PEO if and only if Nf′(x) and Nf′(y) are cliques. If x and y are not adjacent, then
Nf′(x)=Nf(x) and Nf′(y)=Nf(y) which are both cliques. If x and y are adjacent,
then by Lemma 1 we have Nf(j+1; x)⊆Nf(j+1; y). If Nf(j+1; x)=Nf(j+1; y) then
Nf′(x)=Nf(y) and Nf′(y)=Nf′(x)∪{x} which are also both cliques. Otherwise if
Nf(j+1; x)⊂Nf(j+1; y) then Nf′(y) is not a clique because x which is in Nf′(y) is
not adjacent to at least one other vertex in Nf′(y).

The following corollary to this theorem allows us to use simple data structures to
determine whether or not the ordering �jf is a PEO in constant time.

Corollary 1. Let f be a PEO of a chordal graph G where x=f(j) and y=
f(j+1). Then �jf is a PEO of G if and only if x and y are not adjacent or |Nf(x)|=
|Nf(y)|+ 1.

Proof. Suppose x and y are adjacent. Then by Lemma 1, Nf(j+1; x)=Nf(j+1; y)
if and only if |Nf(j+1; x)|= |Nf(j+1; y)|. Now since Nf(j+1; x)∪{y}=Nf(x) and
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Nf(j+1; y)=Nf(y), the equality |Nf(j+1; x)|= |Nf(j+1; y)| is equivalent to |Nf(x)|=
|Nf(y)|+ 1.

3. The Gray code algorithm

In this section we outline the algorithm for generating all PEOs of a chordal graph
G as described in the papers [12,11]. The main result of [12] is the development
of a Gray code for generating linear extensions of a partially ordered set using the
algorithm GenLE(i). Later, in [11], it is shown that the same algorithm can be used to
generate all the basic words of any antimatroid language with changes made only to
the initialization and to the oracle which answers correctly when asked whether two
adjacent elements can be transposed. Since the PEOs of a chordal graph G form the
basic words of an antimatroid language, we can take advantage of the algorithm. Since
the oracle (Corollary 1) can be implemented in constant time by maintaining a simple
data structure, the generation algorithm runs in constant amortized time.
Let P denote the set of all PEOs of a chordal graph G. Consider the graph H =

(P; E′) where an edge (f; g) is in E′ if and only if the PEOs f and g diHer by a single
adjacent transposition. The prism of H , denoted H×K2, is the graph which results from
taking two copies of H and adding edges between the vertices corresponding to the
same PEO. The basic idea behind the Gray code algorithm is to traverse a particular
Hamilton cycle in the graph H×K2. Such a traversal will visit each PEO exactly twice.
However, from Theorem 5.5 from [12], if we print only every second PEO visited in
the Hamilton cycle, we obtain every PEO exactly once. As an example, Fig. 2 illustrates
the graph H×K2 obtained from the graph G which is a simple path [1–4]. Notice that

Fig. 2. A Hamilton cycle in H×K2.
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there are two copies of the graph H with edges between the vertices corresponding to
the same PEOs. A Hamilton cycle is also illustrated starting from the PEO 1423.

3.1. Initialization

The algorithm assumes that the adjacency matrix of the chordal graph is stored in
G[ ][ ] and that there are n vertices in the graph. The other data structures required
are as follows:
• peo[1; 2; : : : ; n]: the PEO,
• inv[1; 2; : : : ; n]: the inverse of peo,
• a[i]; b[i]: simplicial vertex pair,
• h[x]: the value |Nf(x)|.
To start the algorithm for Inding a particular Hamilton cycle, we require an initial PEO
that is obtained by removing pairs of simplicial vertices from G. From Theorem 1 we
know that every chordal graph (with more than one vertex) has at least two simplicial
vertices. The ith simplicial vertex pairs are stored in a[i] and b[i], respectively. The
reason why such an initial PEO is required is because the algorithm assumes that for
any i, the two vertices a[i] and b[i] can be swapped in the initial PEO to obtain a new
PEO. These are the calls to the procedure Switch(t) as described in the next subsection.
To obtain such a PEO for a general chordal graph, we cannot use linear time algorithms
like LexBFS or MCS for Inding an initial PEO because such algorithms do not remove
pairs of simplicial vertices, but instead remove them one at a time.

Example. Consider the chordal graph in Fig. 3. It has two simplicial vertices 2 and
7. The PEO (2; 3; 4; 5; 6; 7; 1) is one that can be computed in linear time using the
MCS algorithm. However, initially the vertex 3 is not a simplicial vertex. It does not
become simplicial until the vertex 2 is removed from the graph. Hence the initial pair
of (2,3) is invalid. Since 2 and 7 are the only simplicial vertices, they must be the Irst
pair to be removed from G. Hence a[1] and b[1] get assigned the values 2,7 or 7,2,
respectively. Once these vertices are removed, the updated graph has simplicial vertices
3 and 6 which get assigned in some order to a[2] and b[2]. When these vertices are

Fig. 3. A chordal graph with 7 vertices.
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removed we are left with 3 simplicial vertices 4,5,1. Now, any pair of these vertices
can be assigned to a[3], b[3]. In this case, since n is odd, there remains a Inal vertex
which does not become part of an a[i], b[i] pair. One such example of a valid initial
PEO is (2; 7; 3; 6; 4; 5; 1).

Because the well-known linear time algorithms for Inding a PEO cannot be used,
we need a new method for Inding an initial PEO. In general, it takes O(n2) time to
determine if a vertex is simplicial. Thus, in the worst case, to Ind the Irst 2 simplicial
vertices will take O(n3) time. If these vertices are removed from the graph, then the
search for the next two simplicial vertices will take time O((n − 2)3). Repeating this
process yields a fairly simple, but naOPve algorithm that runs in time O(n4) for Inding a
valid initial PEO. This initialization time will not be a factor in the overall running time
since a lower bound for the total number of PEOs produced is 2n−1 (a consequence of
Theorem 1). However, it is an interesting question in itself as to how eGciently we can
perform this initialization step. In the following section, we describe a more complex
approach using clique trees, that removes pairs of simplicial vertices in linear time.
Assuming that the function GetSimplicialPair() returns two simplicial vertices from

the chordal graph (and also temporarily removes the vertices from the graph), the
pseudocode for this initialization step is shown in Fig. 4. As the pairs of simplicial
vertices are removed, the appropriate initializations are performed for the data structures
peo[ ]; inv[ ]; a[ ]; b[ ]. If n is odd, then the last remaining vertex is placed in peo[n].
Once the PEO has been completely initialized, we compute the values for h[ ].

3.2. Traversing the Hamilton cycle

Now that we have initialized our data structures, we present the algorithm GenPEO(i)
shown in Fig. 5 which generates the PEOs of a chordal graph by traversing a

—————————————————————————–
procedure InitPEO ();
local i, x, y : integer;
begin

for i := 1 to �n=2� do begin
(x; y) :=GetSimplicialPair();
a[i] :=peo[2i − 1] := x;
b[i] :=peo[2i] := y;
inv[x] := 2i − 1; inv[y] := 2i;

end;
if Odd(n) then begin

x := the remaining vertex;
peo[n] := x;
inv[x] := n;

end;
for each vertex v in G do h[v] := |Nf(v)|;

end;
—————————————————————————–

Fig. 4. InitPEO().
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——————————————————————————————————-
procedure GenPEO (i: integer);
local j, mrb, mra, mla : integer; typical: boolean;
begin

if i=0 then return;
GenPEO(i − 1);
mrb := 0;
typical := false;
while Swappable(inv[b[i]]) do begin

mrb :=mrb + 1;
Move(inv[b[i]]); GenPEO(i − 1);
mra := 0;
if peo[inv[a[i]] + 1] �= b[i] and Swappable(inv[a[i]]) then begin

typical := true;
do

mra :=mra + 1;
Move(inv[a[i]]); GenPEO(i − 1);

while peo[inv[a[i]] + 1] �= b[i] and Swappable(inv[a[i]]);
end;
if typical then begin

Switch(i − 1); GenPEO(i − 1);
if Odd(mrb) then mla :=mra − 1;
else mla :=mra + 1;
for j := 1 to mla do begin

Move(inv[a[i]]− 1); GenPEO(i − 1);
end; end; end;
if typical and Odd(mrb) then Move(inv[a[i]]− 1);
else Switch(i − 1);
GenPEO(i − 1);
for j := 1 to mrb do begin

Move(inv[b[i]]− 1); GenPEO(i − 1);
end; end;

——————————————————————————————————-

Fig. 5. GenPEO(i).

Hamilton cycle in the graph H×K2. Our presentation of the algorithm is identical to the
corresponding algorithm GenLE(i) of [12] for generating linear extensions, except for
the two modiIcations: (1) the test which determines whether two adjacent elements
are swappable is updated speciIcally for PEOs and (2) the subroutine Move(t) is
simpliIed resulting in modiIcations to the parameters passed to it.
The Irst modiIcation is reTected by the addition of the subroutine Swappable(t)

which simply returns whether or not the two adjacent vertices peo[t] and peo[t + 1]
can be swapped to obtain a new PEO. Such a test can be done in constant time using
Corollary 1 as long as the values h[x] = |Nf(x)| are maintained as vertices get swapped
(in the subroutines Move and Switch). Pseudocode for Swappable(t) is shown in
Fig. 6.
The second modiIcation is a simpliIcation of the subroutine Move(t), so that it

swaps the two adjacent vertices peo[t] and peo[t+1] and updates the arrays inv[ ] and
h[ ] as required. The simpliIcation of this routine requires a straightforward adjustment
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—————————————————————————–
function Swappable (t: integer) returns boolean;
local x; y : integer;
begin

x :=peo[t]; y :=peo[t + 1];
if t = n then return(FALSE);
return(G[x][y] = 0 or h[x] = h[y] + 1);

end;
—————————————————————————–

Fig. 6. Swappable(t).

————————————————————————–
procedure Move (t: integer);
local x, y : integer;
begin

x :=peo[t]; y :=peo[t + 1];
swap(peo[t]; peo[t + 1]);
swap(inv[x]; inv[y]);
if G[x][y] = 1 then begin

h[y] := h[y] + 1; h[x] := h[x]− 1;
end;
PrintIt();

end;
————————————————————————–

Fig. 7. Move(t).

to the parameters that get passed to the subroutine. Pseudocode for Move(t) is shown
in Fig. 7.
The only other non-recursive subroutine that gets called by GenPeo(i) is Switch(t)

shown in Fig. 8. If t 
=0 then the subroutine Switch(t) swaps the adjacent pair a[t]
and b[t] in the peo array and also swaps the values a[t] and b[t] themselves. This
swapping of the values a[t] and b[t] is why we require the initial PEO described in
the previous subsection. Again, the arrays inv[ ] and h[ ] must be updated accordingly.
If t =0, then the subroutine Switch(t) eHectively moves to the duplicate PEO and no
data structure changes are required.
As each of the two subroutines Move(t) and Switch(t) forces a move to a new PEO

in the Hamilton cycle, the function PrintIt() is called to print the resulting PEO. But re-
call, since every PEO occurs exactly twice, the PrintIt() function must be implemented
to only print out the PEO every second time it is called.
The initial sequence of calls to generate all PEOs of the input graph G are: Init-

PEO(); PrintIt(); GenPEO(�n=2�); Switch(�n=2�); GenPEO(�n=2�);.
The following theorem is a result of Theorem 5 from [11] and Corollary 1.

Theorem 4. The algorithm GenPEO(i) for generating all PEOs of a given chordal
graph G runs in constant amortized time.
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——————————————————————————–
procedure Switch (t: integer);
local x, y : integer;
begin

if t �=0 then begin
x := a[t]; y := b[t];
swap(peo[inv[x]]; peo[inv[y]]);
swap(inv[x]; inv[y]);
swap(a[t]; b[t]);
if G[x][y] = 1 then begin

h[y] := h[y] + 1; h[x] := h[x]− 1;
end;

end;
PrintIt();

end;
——————————————————————————–

Fig. 8. Switch(t).

In the remainder of this subsection, our aim is to give the reader some insight as to
how the algorithm GenPEO(i) traverses the Hamilton cycle. For complete details, the
reader is encouraged to consult Sections 3 and 4 of [12].
First, the procedure GenPEO(i) is recursive and is called with the global array peo

having the form a[1]; b[1]; a[2]; b[2]; : : : ; a[i]; b[i]; $, where $ is a sequence of vertices
(actually a PEO of G − {a[1]; b[1]; : : : ; a[i]; b[i]}). The order of each a[j]; b[j] for
j=1; : : : ; i is unimportant since they may have been swapped from their original as-
signment. The PEOs generated by a call to GenPEO(i) are exactly those that contain
the subsequences a[i]; b[i] and $. In fact, except for the initial PEO (which is generated
only one more time), each such PEO is generated twice. When the procedure has com-
pleted, the global array peo still has the form a[1]; b[1]; a[2]; b[2]; : : : a[i]; b[i]; $ with
the possible swapping of a[j]; b[j] pairs where j=1; : : : ; i − 1. With this description,
notice that the initial sequence of calls will indeed generate each PEO of a chordal
graph G twice since initially $ is either empty (n even) or contains a single vertex (n
odd).
If we ignore the recursive calls made by GenPEO(i), then new PEOs are generated

by pushing the initially adjacent pair a[i] and b[i] to the right and back again (via calls
to Move) in all possible ways. This will result in the generation of duplicate PEOs as
a result of calls to Switch(i− 1) when i=1. If i¿1, the duplication will occur in the
recursive call. The variables mra; mrb; mla are counters which indicate the amount of
movement of the vertices a[i] and b[i] within the PEO. Also, the boolean typical is
used to diHerentiate between whether b[i] and the leftmost vertex of $ are swappable
(typical) or not (atypical). See Section 3 from [12] for further details.

4. Initialization in linear time

In this section we show that the initialization of the generation algorithm can be
carried out in linear time, O(n+m), where n is the number of vertices in the chordal
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graph and m is the number of edges. This shows that the vertices of a chordal graph
can be “scheduled” optimally on two processors by an algorithm that takes linear
time. The vertices are constrained so that only a simplicial vertex can be run. An
optimal schedule is one of minimal length, length �n=2� in light of Theorem 1. This
scheduling is analogous to, but simpler than, the scheduling of partially ordered sets
on two machines; e.g. [4].

4.1. Clique trees

A clique K is maximal if K is not properly contained in another clique, or equiv-
alently, if no vertex in V − K is adjacent to every vertex in K . A clique tree of
G is a tree T on the maximal cliques of G such that T has the clique intersec-
tion property: for any two maximal cliques K; K ′, the set K ∩K ′ is contained
in every clique on the path from K to K ′ in T . Buneman [3], Gavril [7], and
Walter [17] independently discovered the following characterization of chordal
graphs.

Theorem 5. A graph G is chordal if and only if G has a clique tree.

Fig. 9 shows a chordal graph G and Fig. 10 shows a clique tree of G. Replacing
the edge {Ky; Kw} with {Kx; Kw} gives a diHerent clique tree for G, which shows that
a graph’s clique tree may not be unique.
A chordal graph has at most n maximal cliques [6], so its clique tree has at most

n nodes. There are numerous algorithms that compute the maximal cliques of G and
a clique tree T of G. Blair and Peyton [2] describe a simple O(m + n) time al-
gorithm in their primer on chordal graphs and clique trees. It is also known that
the sum of all vertices over each maximal clique is in O(m + n) (see, for example,
[8, pp. 98–99].

Fig. 9. A chordal graph G.
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Fig. 10. A clique tree T of the graph in Fig. 9, with T ’s edges shown by dashed lines.

4.2. The algorithm

Let G be a connected chordal graph. We present an algorithm that Inds a PEO
f(1); f(2); : : : ; f(n) of the vertices of G such that for every odd 16i6n−1, f(i) and
f(i+1) are simplicial vertices of G({f(i); f(i+1); : : : ; f(n)}). If this induced subgraph
is a clique, then every vertex is simplicial and adjacent. Otherwise, the vertices vi; vi+1

are selected so that they are non-adjacent (two such vertices exist by Theorem 1). The
algorithm maintains a clique tree of the graph, which it uses to Ind and update the
simplicial vertices quickly:
(1) Compute a clique tree T of G. Compute a linked list leaves(T ) containing the

leaves of T .
(2) For each vertex v, compute the number num(v) of maximal cliques of G that con-

tain v, which may be done by scanning the vertices of all of the maximal cliques.
For every maximal clique K , compute a linked list simplicial(K) of the simplicial
vertices contained in K , which are those vertices v∈K such that num(v)= 1.

(3) Choose any two maximal cliques K1; K2 ∈ leaves(T ). Choose any two simplicial
vertices v1 ∈K1; v2 ∈K2. Print and delete v1; v2. For each i=1; 2 in sequence, if
simplicial(Ki) is empty, then let K ′

i be Ki’s neighbor in T and do the following
two steps.
(a) For every vertex u∈Ki, decrement num(u) by 1, and if the new value of

num(u) is 1, then add u to simplicial(K ′
i ).

(b) Delete Ki from T and leaves(T ). If K ′
i has degree 1 in T , then add K ′

i to
leaves(T ).

(4) If T contains least 2 nodes, go to step 3. Otherwise, print the remaining vertices.
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4.2.1. Correctness
A vertex is simplicial if and only if it is contained in exactly one maximal clique;

see [2] for the history of this observation. Then in any clique tree T , any leaf is a
maximal clique K that contains at least one simplicial vertex; otherwise, the clique
intersection property implies that every vertex of K is contained in K’s neighbor K ′ in
T , which means K ⊂K ′, a contradiction. Therefore, the Irst two vertices v1; v2 chosen
by the algorithm are simplicial. Moreover, v1; v2 are non-adjacent; otherwise, clique
{v1; v2} is contained in some maximal clique K3, contradicting the fact that v1; v2 are
simplicial. Observe that G[V − {v1; v2}] is chordal (because every induced subgraph
of a chordal graph is chordal) and connected (because deleting any simplicial vertex
from a connected graph yields a connected graph). Thus, it suGces to show that after
deleting v1; v2, the algorithm correctly updates the data structure.
After a maximal clique K is placed in leaves(T ), its simplicial vertices are deleted

one by one. After K’s last simplicial vertex is deleted, K’s remaining vertices are non-
simplicial and therefore contained in K’s neighbor K ′ in T . Then K is not a maximal
clique of the current G and K must be deleted from T . For every remaining vertex u
of K , the algorithm decrements num(u) and adds u to simplicial(K ′) if u is simplicial
in the current G. Thus, the algorithm correctly updates the data structure.

4.2.2. Complexity
Since steps 1 and 2 run in O(m+n) time, consider step 3. When a simplicial vertex

v is deleted, charge the operation to the maximal clique that contains v. When a non-
simplicial vertex u has num(u) decremented, charge the operation to the maximal clique
that contains v and that is about to be deleted from T . Then each maximal clique K
is charged at most |K |. Thus, step 3 runs in time O(

∑ |K |)=O(m + n).

5. New characterizations for PEOs

In this section we develop two new characterizations of perfect elimination orderings.
The Irst characterization is in terms of chordless paths. A chordless path P is a path
in which no two non-consecutive vertices are adjacent. For example, the shortest path
between any two vertices is chordless.

Theorem 6. An ordering f of a chordal graph G is a PEO if and only if every triple
of vertices {x; y; z} where xy∈E, yz ∈E, and xz =∈E satis=es min(f−1(x); f−1(z))¡
f−1(y).

Proof (If). Suppose there exists a vertex y∈V such that Nf(y) is not a clique. Then
there exist two non-adjacent nodes x and z in Nf(y) (i.e., xy∈E and yz ∈E, but
xz =∈E). Since x and z are in Nf(y), we have f−1(y)¡min(f−1(x); f−1(z)), a con-
tradiction. Thus for each y∈V , Nf(y) is a clique and hence f is a PEO.
(Only If) Consider the triple {x; y; z} such that xy∈E and yz ∈E, but xz =∈E. As-

sume that f−1(y)¡min(f−1(x); f−1(z)). However since f is a PEO, this means that
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Nf(y) is a clique implying that xz ∈E, a contradiction. Thus min(f−1(x); f−1(z))¡
f−1(y).

A sequence a1; a2; : : : ; at is unimodal if there is some value 16k6t such that

a1 6 a2 6 · · ·6 ak ¿ ak+1 ¿ · · ·¿ at :

Corollary 2. An ordering f of a chordal graph G is a PEO if and only if for every
chordless path P=p1 · · ·pt , the sequence f−1(p1); f−1(p2); : : : ; f−1(pt) is unimodal.

Proof. The if part of the statement follows immediately from the previous theorem.
To prove the only if part of the statement, we use induction on the length of the
chordless paths. The base case when t =3 follows directly from the previous theorem.
Otherwise, consider a chordless path P=p1 · · ·pt . By induction, we know that the
chordless paths p1 · · ·pt−1 and pt−2pt−1pt are both unimodal. This implies that P
must also be unimodal.

We now give a second characterization of PEOs using minimal u-v separators. A
separator of G is a subset S of the vertices whose removal separates G into at least
two connected components. S is called a u-v separator if the vertices u and v are
disconnected in G(V − S). A u-v separator is said to be a minimal u-v separator if
it does not properly contain another u-v separator. S is a minimal vertex separator if
for some u and v, S is a minimal u-v separator.

Theorem 7. An ordering f of a chordal graph G is a PEO if and only if every triple
of vertices {x; y; z} where xz =∈E and y is in some minimal x-z separator M satis=es
min(f−1(x); f−1(z))¡f−1(y).

Proof (If). Suppose there exists a vertex y∈V such that Nf(y) is not a clique. This
means that there exist two vertices x and z in Nf(y) that are non-adjacent. Consider
a minimal x-z separator M . Clearly y∈M which implies that min(f−1(x); f−1(z))¡
f−1(y), contradicting the fact that both x and z are in Nf(y). Thus f is a PEO.
(Only If) Let M be a minimal x-z separator containing y. Let M ′ =M −{y}. Since

x and z are disconnected in G(V −M) and connected in G(V −M ′), every path from
x to z in G(V − M ′) contains y. Now consider a shortest (and thus chordless) path
from x to z in G(V − M ′). Note that such a path is also chordless in G. Thus by
Corollary 2, min(f−1(x); f−1(z))¡f−1(y).

It is interesting to note that Simon [15, p. 250] showed that this result was true for
all PEOs generated by LexBFS. However, he incorrectly claimed that the result did not
hold for some other PEOs, in particular, for some generated by the MCS algorithm.

6. Summary

The main result in this paper is the discovery of a constant time oracle that answers
the question of whether two adjacent elements of a PEO can be swapped to obtain
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a new PEO. This leads to the Irst algorithm for generating all PEOs of a chordal
graph G in constant amortized time. As an interesting subproblem, we show how the
initialization of the algorithm can be performed in linear time using clique trees.
In addition, we develop two new characterizations of PEOs: one in terms of chordless

paths, the other in terms of minimal u-v separators. The latter result disproves a claim
made by Simon [15].
The algorithm has been implemented (using the slower initialization) and may be

obtained from the last two authors. It would be interesting to extend our results to the
basic words of other natural antimatroids.
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