
A CellBE-based HPC application for the analysis of
vulnerabilities in cryptographic hash functions

Alessandro Cilardo, Luigi Esposito,
Antonio Veniero, Antonino Mazzeo

Department of Computer Science,
University of Naples Federico II,

via Claudio 20, 80125 Naples, Italy.
Email: acilardo@unina.it

Vicenç Beltran, Eduard Ayguadé
Barcelona Supercomputing Center

C/Jordi Girona 1-3,
08034 Barcelona, Spain.

Abstract—After some recent breaks presented in the technical
literature, it has become of paramount importance to gain a
deeper understanding of the robustness and weaknesses of cryp-
tographic hash functions. In particular, in the light of the recent
attacks to the MD5 hash function, SHA-1 remains currently
the only function that can be used in practice, since it is the
only alternative to MD5 in many security standards. This work
presents a study of vulnerabilities in the SHA family, namely the
SHA-0 and SHA-1 hash functions, based on a high-performance
computing application run on the MariCel cluster available at
the Barcelona Supercomputing Center. The effectiveness of the
different optimizations and search strategies that have been used
is validated by a comprehensive set of quantitative evaluations,
presented in the paper. Most importantly, at the conclusion of our
study, we were able to identify an actual collision for a 71-round
version of SHA-1, the first ever found so far.

I. INTRODUCTION

Cryptographic hash functions, including for example MD5
and SHA-1, have an essential role in security-critical ap-
plications, such as public-key infrastructures. They are ex-
pected to be practically impossible to “invert” and there
must be virtually a unique correspondence between a given
message and its hash. Surprisingly, recent results [18], [7],
[14] have shown that some sophisticated and computation-
intensive techniques can actually lead to collisions (i.e. two
different messages having the same hash value) for the hash
functions used in current applications. The studies on the
vulnerabilities of the SHA-1 function, in particular, are taking
on a decisive role in security research. In fact, due to the
numerous breaches discovered in MD5, SHA-1 is currently
the only hash function that can be practically used, since it
is the only alternative to MD5 in many standards. A deeper
understanding of the robustness and weaknesses of SHA-
1 is thus of paramount importance, and is also necessary
to drive future standardization initiatives and develop next-
generation functions overcoming the vulnerabilities identified
in today’s hash functions. The work presented in this paper
addresses the study of vulnerabilities in the SHA family,
namely the SHA-0 and SHA-1 hash functions, by identifying
new search strategies that can decrease the computational
workload required for finding a collision.

As better described in Section III, the whole collision search

process is divided in two phases. The first one leads to a so-
called differential characteristic, having the essential purpose
of limiting the search space, while the second phase uses a
number of techniques and search strategies in order to effi-
ciently explore the space. During our work, we have built a set
of ad-hoc tools to implement the first phase and generate suit-
able differential characteristics. For the second phase, which
has critical performance requirements, we targeted a high-
performance computing facility, namely the MariCel cluster,
available at the Barcelona Supercomputing Center, based on
the Cell Broadband Engine architecture. The effectiveness of
the different optimizations and search strategies is validated
by a comprehensive set of quantitative evaluations presented
in the last part of the paper, and –most importantly– by an
actual collision identified for a 71-round version of SHA-
1, the first ever found so far. As a result of the techniques
developed during our study, moreover, we were able to find
such collisions at a relatively small computational cost.

The rest of the paper is structured as follows. Section II
summarizes the current state-of-the-art related to the ex-
ploitation of vulnerabilities in cryptographic hash functions.
Section III gives an overview of the collision search process.
Section IV presents the HPC facility used for computation-
intensive tasks. Section V provides a thorough description of
the highly parallel application developed to drive our study,
along with several techniques and optimizations carried out to
maximize the performance on the target parallel architecture.
Section VI gives a detailed quantitative evaluation showing
the impact of the most significant optimizations adopted. It
also presents a 71-round collision that has been identified
to demonstrate the effectiveness of the proposed techniques.
Section VII concludes the paper with some final remarks.

II. BACKGROUND

In current applications, there are two widely used cryp-
tographic hash functions: MD5 [12] and SHA-1 [11]. Both
are iterative hash functions based on the Merkle-Damgård
construction along with a compression function. The compres-
sion function requires two fixed size inputs, namely a k-bit
message block and a n-bit Intermediate Hash Value (internal

2010 12th IEEE International Conference on High Performance Computing and Communications

978-0-7695-4214-0/10 $26.00 © 2010 IEEE

DOI 10.1109/HPCC.2010.113

450

state between message blocks, denoted as IHV), and outputs
the updated IHV.

MD5 was designed by R. Rivest in 1991. In 1993 some
weaknesses in its design were pointed out. In 2004, in partic-
ular, X. Wang et al. generated a collision for MD5, presented
at EuroCrypt 2005 in [19]. Authors in [15] and [16] then
extended this collision construction method, leading to the
surprising result presented in [14] at the beginning of 2009.
The authors devised a practical attack scenario, where they
successfully created a rogue digital identity certificate issued
by an unaware real-world Certification Authority (CA) and
trusted by all common web browsers. The rogue certificate
would allow the attacker to impersonate any website on the
Internet, including banking and e-commerce sites secured
through the HTTPS protocol.

SHA-1 was issued by the NIST in 1995 as a Federal Infor-
mation Processing Standard [11] as a new and more reliable
function to be used in cryptographic applications. It is based
on similar design principles as MD5, although it produces
longer digests (160 bits) and overcomes the vulnerabilities
then identified for its short-lived predecessor SHA-0 and for
MD5. Since its publication, SHA-1 has been adopted by many
governments and industry security standards, in particular
standards on digital signatures for which a collision-resistant
hash function is strictly required.

Although much more robust than MD5, the SHA family
is not immune from risks. In 1998 Chabaud and Joux [5]
proposed a cryptanalysis technique on the full SHA-0, with a
complexity of 261. It is a differential attack that uses a weak-
ness of the expansion algorithm of SHA-0, and is faster than
the generic birthday paradox attack. Biham et al. in [2] and [3]
improved these results, with the use of neutral-bits. Authors
presented a reduced complexity approach to find collisions for
SHA-0 and weakened versions of SHA-1. For the first time,
in [18], Wang et al. showed a method to find a collision for
the standard SHA-1 80-round version with a complexity lower
than the theoretical bound of 280, namely 269, using the Non-
Linear Connecting Characteristics. Although this complexity
is still out of reach, these results significantly influenced
subsequent attacks against SHA-1 [17] and MD5 [4]. Authors
in [20] exploited a technique called message modification to
reduce the complexity of attacks against SHA-1. De Cannière
et al. [7] then described a way to automatically find complex
Non-Linear characteristics and used it to determine a two-
block colliding message pair for a weakened 64-step version
of SHA-1. The same researchers then presented a collision
for a 70 round version in [6], while an equivalent result was
obtained by S. Manuel and T. Peyrin in [10]. An interesting
initiative concerning SHA-1 collisions is the “SHA-1 collision
search project”, hosted by the University of Graz, Austria [13].
It is a distributed computing project based on BOINC, an open
source distributed computing framework that allows volunteers
on the Internet to join a project and donate CPU-time. The
project started in 2007, exploiting the achievements on SHA-
1 vulnerabilities available at that time. However it was put on
hold in May 2009 due to lack of progress.

III. COLLISION SEARCH PROCESS

The purpose of a hash collision search program is to find
a pair of messages producing the same hash value. A naı̈ve
approach would consist, of course, in searching the whole
space of message pairs until a colliding one is found. With
an n-bit hash function, this would require, roughly, 2(n/2)

hash evaluations (the so-called birthday paradox), which is
of course infeasible with any current hash function. Instead
of testing arbitrary pairs, existing approaches try to exploit
the internal structure of the hash function to locate a special
subset of message pairs which (1) are considerably more
likely to collide than random pairs, and (2) can be efficiently
enumerated.

Before presenting our collision search strategy and the
parallel application proposed, we give an overview of the
core structure of SHA family hash functions. While a full
description of the algorithm is given in [11], we will refer
to a restructured version which is especially suitable for
cryptanalysis, as described in [2], [7]. Essentially, the function
takes a 512-bit message block, divided into sixteen 32-bit
words, and expands them into eighty 32-bit words, where
the first sixteen coincide with the initial message, and the
remaining words are directly derived from the first message
words by means of a “message expansion function”. Call W
the overall sequence of eighty 32-bit words of the expanded
message. SHA-0 and SHA-1 only differ in the way the 80
words of the expanded message are generated. The main loop
in both functions is made of 80 rounds. During each round,
a state variable -call it A- is updated based on the previous 5
values of A and the corresponding word of W , which are used
as input to a “compression function” producing the new value
of A. For the first few rounds, where some of the previous
values of A do not exist, a set of five standard inizialization
constants are used. The last five values of A (rounds 76
through 80) are –after reorganization and chaining operations–
the output of the hash function. An illustration of this process
is given in Figure 1. The above process can be iterated on
more than one 512-bit message block, by using the last five
words obtained for one block as the initialization values for the
subsequent one. This allows the hash function to be applied
to messages of arbitrary length.

The essential idea behind the attack to SHA is to constrain
the values of the messages and registers in order to reach
a collision with a certain probability. Such set of bit-level
constraints on the difference of two messages is called “dif-
ferential characteristic” (an example is shown in Figure 2). A
differential characteristic is organized into two sections. The
W part defines the constraints imposed between the bits of the
two messages in each position, while the A part contains the
constraints forced on the internal registers during the hashing
process. The constraints are expressed by a set of symbols.
‘1’ and ‘0’ indicate that both bits in the two messages must
take on the values 1 and 0, respectively, ‘u’ and ‘n’ indicate a
signed difference (1/0 or 0/1, respectively), ‘x’ an unspecified
difference, ‘−’ two unspecified equal values. Notice that,

451

Fig. 1. An example of SHA execution

Fig. 2. A differential characteristic.

because of the Message Expansion from the first 16 words,
all the constraints on the W part are either certainly verified
or are impossible. The definition of a suitable characteristic is
of course essential to the success of the attack. A characteristic
leads to a collision in one block when it imposes a zero
difference on the last five words Ai. However, this implies,
in turn, some constraints on the previous rounds that may be

incompatible with the expansion and compression functions.
The basic idea in the definition of a differential character-

istic is the combination of local collisions [5]. These are sets
of differences that are strategically placed in the characteristic,
in order to introduce discrepancies between the two messages,
while affecting as little as possible the state registers. Details
are out of the scope of this paper, and can be found in the
original article. Local collisions can be linearly combined in
a so-called linear characteristic. Unfortunately, characteristics
obtained in this way have an extremely low probability to lead
to collisions, and, in fact, do not allow feasible attacks. A
first important improvement can be achieved by considering
two-block messages, where the output of the first block is
used as input for the second one. In this way, we do not
need to find a single characteristic that leads to a collision,
but two that cause small opposite differences. In practice,
this degree of freedom makes an attack on two blocks (1024
bits) much more likely to succeed, although more complicated
to carry out. A further improvement can be achieved by
using non-linear (NL) characteristics, obtained by imposing,
at least on a part of the characteristic, conditions that are
totally unconnected with the concept of local collision. Such
conditions are especially set on words in the first rounds, the
so-called early rounds. These in general match the rounds in
which the original words of the message are used (0 − 15),
possibly plus some more. In a typical scenario, thus, we have
an overall differential characteristic made of a first NL part
followed by a purely linear section. Independent of the type of
characteristic, at each round j we can evaluate the probability
that the subsequent Aj complies with the characteristic, given
that the current word Wj and the previous five Ai do as much.
This probability is called Pu(j) [7]. Under the assumption of
statistical independence between the conditions at each round,
the overall probability of success can be roughly calculated
as the product of all the probabilities Pu(j) corresponding
to each round. The size of the search space can be calcu-
lated by counting the degrees of freedom in the differential
characteristic. Then, it is easy to evaluate the probability to
actually find colliding message pairs in such space. Once a
characteristic with a suitable value of probability is built, we
can start the actual collision search. This proceeds by trying
pairs of messages whose difference complies with the fixed
characteristic. The two messages in each pair are hashed until
an incompatibility with the differential characteristic is found,
or until a collision is reached at round 80. It is essential to
enumerate all available message pairs in the search space, to
evaluate them exhaustively, possibly optimizing the search by
pruning large subspaces as soon as it is possible to determine
that they do not contain collisions.

To summarize, the overall collision search process can be
divided into two main phases:

• Phase 1) definition of a differential characteristic, en-
suring a suitable search space and a certain value of
probability for the success of the attack

• Phase 2) enumeration of message pairs compliant with
the differential characteristic, until a collision is found.

452

The work presented in this paper aims to identify weak-
nesses and study new search techniques for the SHA family
hash functions, based on the development of a HPC ap-
plication used for collision search and data analysis. The
overall structure of the application is based on the two-phase
process just described. Notice that the first phase is semi-
automated and is partially interactive in nature. In fact, the
support tools we developed for the first phase, based on both
existing and original techniques, are manually driven and their
input parameters are gradually refined by the user until a
reasonably good quality characteristic is found. Compared
to the second phase, the first phase is also less critical in
performance, meaning that an increase in the computing power
does not necessarily yield an improved quality characteristic.
The second phase, on the other hand, is highly critical in
performance and can be automated by finding out efficient
ways to enumerate the message pairs in the subset defined by
the characteristic, and by testing them rapidly. The essential
idea is thus to run the first phase and find out a reasonably
good characteristic “off-line”, prior to the parallel search run
on the supercomputer.

IV. THE MARICEL CLUSTER

To accelerate the exploration of the search space performed
in the second phase, we have used the Maricel cluster hosted
at the Barcelona Supercomputing Center, which is a heteroge-
neous multi-core cluster based on 72 QS22 blades. Each QS22
includes 2x Cell/B.E processors at @3.2Ghz and 8 GBytes
of RAM. All the QS22 are inter–connected by a 4x DDR
Infiniband network. The total number of cores is 1296 for a
peak performance of 10 TFlops. In the rest of this Section the
Cell/B.E. architecture and the CellMT library are described.

A. Cell/B.E. architecture

The Cell/B.E. is a heterogeneous processor composed of one
main general purpose processor (PPU) and eight specialized
cores (SPUs) with software-managed local stores. Each SPU
only has direct access to its own local storage, so before any
data computation may take place the involved data must be
explicitly transfered from main memory to a local store. The
data is transfered between local storages and main memory
with asynchronous DMA operations managed by a specialized
memory flow controller (MFC), thus the SPU is able to
keep computing while up to 16 DMA operations are in-fly.
The ability to issue asynchronous DMA operations between
the local stores and the main memory enables an efficient
overlapping of computation time and data transfer time, but
at the cost of higher software complexity. The most widely
used techniques to exploit this processor feature are the double
buffering and the multi-threading schemes, that are discussed
in Section IV-B.

Figure 3 shows the three basic components of the Cell pro-
cessor. First, the PowerPC Processor Element (PPE), which is
primarily intended to manage global OS resources. Second, the
Synergistic Processing Elements (SPEs) that are specialized
vector processors with a private local storage and a DMA

Fig. 3. The Cell Broadband Engine Architecture (CBEA).

engine, which can perform up to 16 asynchronous DMA
transfers between the local storage and main memory at the
same time. Finally, the communication between the PPE, the
SPEs, main memory, and external devices is realized through
an Element Interconnect Bus (EIB). The EIB has a theoretical
peak data bandwidth of 204.8GB/s, but the DMA operations
with main memory are limited to 25.6GB/s.

B. CellMT micro–threading library

The CellMT library provides a micro-threaded environment
for the SPUs of the Cell/B.E. processor, which enables the
concurrent execution of several threads inside each SPU.
The use of multiple threads in the same SPU naturally
overlaps the computation time of one thread with the data
transfer time of the other threads, without increasing the code
complexity. Previous evaluations of the CellMT library with
synthetic benchmarks [1] and real applications [8] show that
the multi-threaded approach can outperform a hand-coded
double buffering scheme, with speedups from 0.96x to 3.2x,
while maintaining the complexity of a naı̈ve buffering scheme.

The cooperative multi-threading library is implemented on
a core library that provides all the features and flexibility
required to run complex multi-threaded applications inside the
SPUs. This core library provides a low-level threading API that
can be directly called from the SPU application code, although
most applications only need to change the blocking DMA
wait calls, to the waiting function provided by the library.
The wait for dma function provided by the CellMT library
saves the current thread state and relinquishes the control of
the processor to the next ready thread following a round–robin
scheduling policy. The cost of the context switch is below 200
cycles, despite the number of ready or blocked threads.

V. PARALLEL CELL/B.E.-BASED APPLICATION

The construction of a differential characteristic suitable
for the collision search process, required in Phase 1) (see

453

Fig. 4. Representation of the structure of the application.

Section III), is a composite task. It is structured into three
main sub-phases, mostly heuristic in nature, conceived and
descripted for the first time in [7]. We start with a basic
differential characteristic, such as the one Figure 2, but com-
pletely unconstrained in its first part (corresponding to the
early rounds), and then apply a series of specializations to
add conditions and limit the search space. Every sub-phase
basically introduces constraints, each with a different criterion.
While the first phase operates pseudo-randomly, the following
ones put increasingly more efforts towards the construction
of a good characteristic, having relatively high probability
of being satisfied. Although each of the sub-phases can be
automated, so that they can be executed in a sequence, manual
adjustments and tests on the quality of the intermediate results
have proven to yield better results. The described procedure
allowed us to find good quality characteristics, in a relatively
small amount of time compared to the effort required by the
Phase 2). In addition to the elements mentioned before, this
suggests that a parallelization of this phase would be of no
practical impact. The search for a message pair satisfying the
characteristic’s constraints, on the other hand, has an entirely
different nature. The problem is well defined and very regular:
we need to test for conformance the set of messages allowed
by the characteristic as fast as possible, in order to find a
near collision. Moreover, there is no qualitative aspect to
assess, as in the characteristic construction: either the message
pair is conformant, or it is not and must be discarded. This
motivated us to design a highly parallelized version of the
search program, able to fully exploit the potential of the
Cell/B.E. architecture.

A. Structure of the parallel application

The application we developed for Phase 2) of the collision
search is based on MPI, and is organized in a hierarchy
made of three levels. At the top, a master node analyzes the
first few rounds (depending on the particular characteristic, in
general less than five), in order to produce more constrained
(or specified) characteristics, which are then sent to the slave
nodes. Both the master and the slaves are Cell/B.E. processors.
On each of the slaves, the PPU receives the assigned job,

consisting of a particular characteristic that includes a specific
subset of the message pairs. The slave PPU, in turn, performs
a similar decomposition, by specifying some of the indeter-
minate bits and thus creating a series of sub-jobs, that are
different partial specifications of the input characteristic. Each
of these sub-jobs is then delivered to one of its SPUs. Here,
communication and processing are managed, respectively, by
two threads of a multithreaded application based on the
CellMT library introduced in Section IV-B. The SPU thread
receives a mostly constrained characteristic, containing just a
few freedom degrees (denoted as free bits), concentrated in
the last of the early rounds. This keeps the thread busy in
its processing for a time long enough to make sure that the
communication overhead is negligible. In general, however,
we do not desire to assign to the SPUs tasks that are too
large. In fact, this would mean to leave more free bits in
the upper portion of the characteristic, resulting in a more
involved search process for the SPU and fewer opportunities
for control simplifications and branch hints. In addition to the
actual message pair, it is also convenient to deliver to the SPU
the state of the registers for each of the two messages at the
end of the last round calculated by the PPU. By doing so, the
SPU does not need to recalculate the state again, while the
additional information transmitted is relatively small and has
little impact on the overall communication cost. Once the job
is received, the SPU thread analyzes the message pairs allowed
by the characteristic received. In case it finds out a collision,
this information is notified to the PPU, and then to the master,
in order to stop the multi-node application. Otherwise, the
thread will simply ask for a new job.

The tasks accomplished by the SPUs basically consist in
searching the space of message pairs conformant to W , and
testing whether a given message pair is also compliant to A
(the register part), throughout all the rounds of the compression
function. The search proceeds with a depth first tree approach.
The original characteristic represents the root of the tree, and
every node has two children, each associated to the same
characteristic as the father, except for an indeterminate bit,
which is specified differently in each of them. Unfortunately,
the set of messages theoretically determined in this way is
unmanageable, containing up to 2200 message pairs. Therefore,
in the development of the application, a considerable effort has
been spent for optimizing several aspects related to both the
search algorithm and the underlying hardware architecture. In
the following sections, we discuss the most important ones.

B. Algorithm Optimizations

By using a proper bit specification order, some effective
pruning techniques can be adopted, shrinking the search space
by several orders of magnitude. It has been observed experi-
mentally that, once a message pair has diverged from the path,
it is extremely unlikely1 that, at a later round, it comes back to
following it. Thus, if an inconsistency with the characteristic
is detected at a certain round, it is practically unworthy to

1Except for some special cases, illustrated in Section V-E.

454

keep on calculating the registers values. If the specification of
the bits is performed with ascending round number, there will
be some levels in the tree for which an entire round will be
completely determined, not containing any indeterminate bit.
As soon as one of these levels (say the one completing round
R) is reached, register AR+1 can be calculated; at this point
we are able to decide if the portion of the message which has
been completed is conformant to the characteristic or not. In
the second case, we discard all the message pairs having those
values in the first R rounds. This operation, in terms of the
tree search, corresponds to the pruning of the entire subtree
rooted in the node associated to the characteristic for which
the inconsistency has been detected. The Master performs this
task on the few first rounds, and each PPU does the same on
almost all of the remaining early rounds. If it reaches a certain
round (usually the 14th) without incompatibilities, it prepares
the specific configuration of the characteristic and sends it to
an SPU. Some degrees of freedom are left for a matter of load
balancing between the components of the Cell/B.E.

An analogous technique is used in the search performed
by the SPUs; however, note that when an inconsistency is
detected at a late round (i.e. after the 16th) it is impossible
to directly modify the message word involved, which are part
of the expansion. Instead, the search needs to go back and
modify the message where it is allowed, and recalculate the
register values from there on.

Another important improvement to the algorithm is provided
by the use of Auxiliary Paths (APs, see [9]). An AP is a set of
bits of the message which, if flipped, produce another message
pair having, after a transitory phase, the same values in the
register until a certain round rAP . Having several (say N)
such groups is a great advantage, because once a message
pair is tested to be conformant to the characteristic until round
rAP , it is possible to generate 2N − 1 new message pairs that
will certainly be conformant, having the same registers state
at round rAP . Afterwards, they will behave as independent
message pairs, having different message expansions. A smart
way to apply all the AP configurations consists in using the
Gray code. This allows flipping just one AP at each iteration,
as well as avoiding the need to backup and restore the original
message pair.

C. MicroThreading

The application makes use of the CellMT library, presented
in Section IV-B. On each SPU, two threads are run and
operate concurrently. Their purpose is to reproduce the effects
of the double buffering, without having to actually manage
the twofold increase of data structures. The job performed by
a thread consists in a sequence of steps: the request for an
authorization to read from the buffer by the PPU, the actual
read, the elaboration, and the ACK to the PPU. The library
enables I/O operations to be completely masked, as after a
thread has started them it immediately yields the control to
the other one. This improves substantially the efficiency of an
SPU: as shown in Figure 7, around 97% of the time is spent
for data processing.

D. SIMDization of the SPU code

The 128-bit datapath of the SPU’s SIMD architecture,
compared to the 32-bit parallelism inherent in the SHA-1
algorithm, offers an inviting opportunity to perform a vec-
torization of the search process, providing in principle four
slots for independent SIMD processing. Unfortunately, the
theoretical speed-up factor of four could be hardly reached
in practice. This optimum limit could be reached only if one
of the following conditions were true:

• if we could always pick four characteristics to be ana-
lyzed on the SPU that reach an inconsistency at the same
round, to avoid idle slots. Unfortunately, knowing where
the message pair will fail is exactly the objective of the
search itself.

• if we could somehow build a data structure allowing us to
discard the inconsistent message pairs and replace them
dynamically in the SPU slots with others, independent
of the round reached by each of them. Although con-
ceptually valid, this solution does not pay off because it
causes a very large overhead due to the management of
misalignments between the different slots.

Therefore, the best solution is to program the SPU so that
it performs the operations for four different message pairs,
until a collision is found or all of them are discovered to
be inconsistent, tolerating inactive slots during some of the
three search phases (early, middle, late rounds). This is an
acceptable trade-off for the problem: in exchange for a low
overhead, we accept the fact that sometimes the effective
parallelism is reduced. Nevertheless, experimental results have
shown that, due to the behavior of the number of surviving
message pairs (exponentially decreasing), the actual speed-
up is in fact reasonably close to the theoretical value (see
Section VI-A4).

E. New vulnerabilities in SHA-1

The analysis of the runs of the application enabled us to
discover two new promising techniques for decreasing the
complexity of an attack to the SHA family hash functions.
Firstly, we removed one of the basic limitations inherent in
the standard collision search approach presented in Section III,
i.e. the bit-wise nature of the constraints imposed by the
differential characteristic. For a few parts of the characteristic,
in fact, we implemented some additional inter-bit constraints,
taking into account the effects of the expansion function.
Secondly, we found out that it is practically possible to relax
some of the prescribed constraints, especially in the last,
critical, rounds, effectively enlarging the search space and the
density of solutions. By doing so, we were able to improve the
probability 23.47 ≈ 11.08 times, reducing by the same factor
the expected time to find a conformant message pair2. Due
to the lack of space, we are not able to discuss these new
techniques thoroughly here. Further details will be provided
in a future publication.

2These numbers refer to the characteristic used for the collision in Sec-
tion VI-B.

455

Fig. 5. Normalized expected time for a collision - multiple nodes

Fig. 6. Average time per job sent as seen from the PPU

VI. QUANTITATIVE EVALUATIONS AND RESULTS

The optimizations discussed in the previous section have
been accurately tested and shown to actually provide consid-
erable improvements. In the following sections we analyze
these effects in detail.

A. Performance evaluations

1) Algorithmic techniques: The pruning technique de-
scribed in the previous section has a substantial impact on the
performance, corresponding to several orders of magnitude.
The Auxiliary Paths also have a significant role. For example,
the two APs used for our evaluation yielded a 2.26 speed-up
in the overall search time.

2) Scalability on multiple nodes: In Figure 5 we show how
the average time to get a collision varies according to the
number of nodes involved. We have verified that the speed-up
is nearly proportional to the number of nodes. In fact, once
the master has sent a job to all the slaves, the interactions
among the elements are extremely rare –or even inexistent, if
we send a single very large job at the beginning– except for
the “collision found” message. This last message is propagated
up in the hierarchy, whereas the subsequent command to stop
the execution is sent in the opposite direction.

Fig. 7. Fraction of processing time over the total time

Fig. 8. Normalized expected time for a collision - SIMDization

3) Scalability on a single Cell/B.E. processor: Figure 6
displays how the actual average time to complete a job3 varies
according to the number of SPUs involved in the process. The
speed-up is almost linear. The slight overhead is caused by
the size of the jobs, which is not completely optimized for
communication, while simplifying (and accelerating) notice-
ably the elaboration on the SPUs.

Figure 7 shows the benefits on the SPU side deriving from
the use of the CellMT library (Section IV-B). The presence
of two threads allows the overlapping of the I/O phases to the
elaboration phases, enabling SPUs to be processing data for
more than 97% of the execution time.

4) SIMD Speed-up: Figure 8 shows how the average ex-
pected time to find a collision changes according to the level of
SIMDization implemented. A 3.03 speed-up factor is achieved,
considering a 4-way SIMD parallelization, which is overall an
acceptable result. In fact, as discussed in Section V-D, the
algorithm does not have a completely regular structure and
has a significant portion involving control operations.

3Example jobs refer to the run that led to the collision presented in
section VI-B.

456

B. A 71-round SHA-1 collision

Finally, based on the techniques implemented, including
those introduced in Section V-E, we were able to show for the
first time the feasibility of an attack against a reduced version
of SHA-1 as large as 71 rounds (very close to the standard 80-
round SHA-1). The colliding messages and the resulting hash
value are displayed in Figure 9. Interestingly, by incorporating
all the techniques presented in this paper, including the new
approaches that have been discovered during this work, we
were able to complete the search process with a relatively
small computational workload, equal to approximately 500
Cell/B.E. machine-hours per block, further confirming the
effectiveness of the proposed techniques.

Fig. 9. The two messages producing a 71-round collision.

VII. CONCLUSIONS

This work presented a study of the vulnerabilities in the
SHA family, a hot topic today in security research, due to
the recent breaks of cryptographic hash functions MD5 and
SHA-1. For the performance-critical phase of the analysis, we
relied on a high-performance computing facility, namely the
MariCel cluster available at the Barcelona Supercomputing
Center, based on the Cell Broadband Engine architecture.
The effectiveness of the different optimizations and search
strategies was validated by a comprehensive set of quantitative
evaluations presented in the last part of the paper, and –most
importantly– by an actual collision identified for a 71-round
version of SHA-1, the first ever found so far. Moreover, as a
result of the techniques developed, we were able to find this
collision at a relatively small computational cost, roughly 500
Cell/B.E. machine-hours per block. These results provide new
insights into the security robustness of the SHA-1 function
and may influence the definition of future standardization ini-
tiatives. The findings presented in this work also make a case
for the essential role that high-performance computing may
have in the study of important open-issues in cryptography
research.

ACKNOWLEDGMENT

This work was performed under the HPC-EUROPA2 project
(project number: 228398) with the support of the European

Commission - Capacities Area - Research Infrastructures. The
work was also supported by the GARR consortium, under
its “Orio Carlini” grant programme, and by the University
of Naples Federico II, under its internal staff mobility pro-
gramme.

REFERENCES

[1] V. Beltran, D. Carrera, J. Torres, and E. Ayguadé, “CellMT: A Cooperative
Multithreading Library for the Cell/B.E.” in HiPC ’09: Proceedings of
the 16th annual IEEE International Conference on High Performance
Computing, Cochin, India, 2009.

[2] E. Biham and R. Chen, “Near-Collisions of SHA-0”, Advances in
Cryptology, proceedings of CRYPTO 2004, LNCS 3152, pp. 290305,
Springer Verlag, 2004

[3] E. Biham et al., “Collisions of SHA-0 and Reduced SHA-1”, R. Cramer
(Ed.), proceedings of EUROCRYPT 2005, Lecture Notes in Computer
Science 3494, pp. 3657, Springer-Verlag, 2005

[4] J. Black, M. Cochran, and T. Highland, “A Study of the MD5 Attacks:
Insights and Improvements”, in M. Robshaw, editor, Proceedings of Fast
Software Encryption 2006, Graz, Austria, March 15-17, 2006, volume
4047 of LNCS, 2006

[5] F. Chabaud, A. Joux, “Differential Collisions in SHA-0”, proceedings
of Advances in Cryptology, Proceedings of CRYPTO ’98, vol. 1462 of
Lecture Notes in Computer Science, pp. 5671, Springer Verlag, 1999

[6] C. De Cannière, F. Mendel, and C. Rechberger, “Collisions for 70-step
SHA-1: On the Full Cost of Collision Search”, C. Adams, A. Miri, and
M. Wiener (Eds.), SAC 2007, Springer-Verlag, LNCS 4876, pp. 5673,
2007

[7] C. De Cannière, C. Rechberger, “Finding SHA-1 Characteristics: General
Results and Applications”, Advances in Cryptology - Asiacrypt 2006

[8] R. Ferrer, M. González, F. Silla, X. Martorell, and E. Ayguadé, “Evalu-
ation of memory performance on the cell be with the sarc programming
model,” in MEDEA ’08: Proceedings of the 9th workshop on MEmory
performance. New York, NY, USA: ACM, 2008, pp. 77–84.

[9] A. Joux and T. Peyrin, “Hash Functions and the (Amplified) Boomerang
Attack” in Advances in Cryptology - CRYPTO 2007

[10] S. Manuel, T. Peyrin, “Collisions on SHA-0 in One Hour”, Fast Software
Encryption, 2008

[11] National Institute of Standards and Technologies, Secure Hash Standard,
Federal Information Processing Standards, Publication FIPS-180-1, April
1995

[12] R. Rivest, “The MD5 Message-Digest Algorithm”, Network Working
Group, Request for Comments: 1321, April 1992

[13] SHA-1 collision search project, University of Graz, Austria
[14] A. Sotirov, M. Stevens, J. Appelbaum, A. Lenstra, D. Molnar, D.A.

Osvik, B. de Weger, “MD5 considered harmful today: Creating a rogue
CA certificate”, 2009

[15] M. Stevens, “On collisions for MD5”, MSc Thesis,
Eindhoven University of Technology, June 2007, available from
http://www.win.tue.nl/hashclash/

[16] M. Stevens, A. Lenstra and B. de Weger, “Chosen-prefix Collisions for
MD5 and Colliding X.509 Certificates for Different Identities”, in Moni
Naor (eds), proceedings of Advances in Cryptology - EUROCRYPT 2007,
vol. 4515 of Lecture Notes in Computer Science, pages 1-22, Springer
Verlag, Berlin, 2007.

[17] M. Sugita, M. Kawazoe, and H. Imai, “Grobner Basis Based Cryptanal-
ysis of SHA-1”, Cryptology ePrint Archive, Report 2006/098, 2006.

[18] X. Wang, Y. L. Yin, and H, “Yu. Finding Collisions in the Full SHA-1”,
in V. Shoup, editor, in proceedings of Advances in Cryptology - CRYPTO
2005, vol. 3621 of Lecture Notes in Computer Science, pages 1736,
Springer, 2005

[19] X. Wang and H. Yu, “How to Break MD5 and Other Hash Functions”,
in: Ronald Cramer (ed.), Advances in Cryptology - EUROCRYPT 2005,
vol. 3494 of Lecture Notes in Computer Science, pages 19-35, Springer,
2005.

[20] X. Wang, A. Yao, and F. Yao, “Cryptanalysis of SHA-1”, presented at
the Cryptographic Hash Workshop hosted by NIST, October 2005

457

