I*I National Research Conseil national
Council Canada de recherches Canada

Institute for Institut de technologie
Information Technology de l'information

NC-CN\NC

ARTag Revision 1. A Fiducial Marker System
Using Digital Techniques *

Fiala, M.
November 2004

* published as NRC/ERB-1117. November 24, 2004. 46 Pages. NRC 47419.

Copyright 2004 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

Canada

I*I National Research Conseil national ERB-1117

Council Canada de recherches Canada

Institute for Institut de technologie
Information Technology de l'information

NC-CNIC

ARTag Revision 1. A Fiducial
Marker System Using Digital
Techniques

Fiala, M.
November 2004

Copyright 2004 by
National Research Council of Canada

Permission is granted to quote short excerpts and to reproduce figures and tables from this report,
provided that the source of such material is fully acknowledged.

141
NRC 47419

NRC 47419/ERB-1117
Printed November 2004

ARTag Revision 1, a Fiducial Marker
System Using Digital Techniques

Mark Fiala
Computational Video Group
Institute for Information Technology
National Research Council Canada

Abstract

ARTag is a 2D marker and computer vision system for Augmented Reality,
a Fiducial marker system, that was introduced in a prior NRC publication [6].
Augmented Reality (AR) is an emerging display paradigm, an enabling technol-
ogy of AR is vision based pose tracking. Pose can be found accurately and with
low cost using a camera as the only special hardware. Fiducial marker systems
consist of patterns that are mounted in the environment and automatically de-
tected in digital images using an accompanying detection algorithm. They are
useful for AR, robot navigation, and general applications where the relative
pose between a camera and object is required. ARTag is a marker system that
uses digital coding theory to get a very low false positive and inter-marker con-
fusion rate with a small required marker size, employing an edge linking method
to give robust lighting and occlusion immunity. ARTag markers are bi-tonal
planar patterns that consist of a square outline with a digital 36-bit word en-
coded in the interior. The digital word contains a unique ID number protected
from false detection with the digital code techniques of checksums and forward
error correction (FEC) providing very low and numerically quantifiable error
rates. ARTag’s performance is theoretically or experimentally examined for
nine characteristics important to AR; false positive and false negative detection
rates, inter-marker confusion probabilities, immunity to lighting, immunity to
occlusion, minimal marker size, vertex jitter, marker library size, and speed
performance. This publication further characterizes ARTag and provides more
detailed information and experimental results useful for those interested in uti-
lizing ARTag, and those interested in fiducial marker systems themselves.

Contents

1

2

Introduction

Planar Marker Systems

2.1 Functionality of ARToolkit

ARTag

3.1 Quad Detection
3.2 Digital Processing

False Positive Marker Detection

4.1 Uniqueness of Markers: Reducing Inter-Marker Confusion

4.2 Designing the ARTag Library
4.3 Adressing Reflections

4.4 Recommended Subset of the ARTag Library
4.5 Minimum Pattern Size and Processing Time

Processing Time
Jitter

Conclusions

11
11
15

17
20
23
24
24
30

36

39

42

1 Introduction

ARTag is a combination of special 2D patterns and computer vision that was intro-
duced in August 2004. A preliminary report was issued titled ARTag, An Improved
Marker System Based on ARToolkit [6] and since then ARTag has undergone some
improvements. A version, ARTag revl was released for demo evaluation which has
some differences from the system described in the first publication. The edge-linking
first stage of ARTag was not discussed and its ramifications, the library is reported
as 2002 markers for clarity instead of 2046 markers with 44 non-recommended codes,
further experiments were performed to update the speed performance information,
and more extensive experiments were done to characterize the minimal marker size
and vertex jitter.

Designing markers to add to the environment for robust detection in camera and
video imagery is a computer vision application useful to situations where a camera-
object pose is desired such as Augmented Reality (AR), position tracking, photo-
modeling and robot navigation. 2D planar patterns can be added to the environment
and recognized in the camera images. A 2D planar marker system consists of both
a set of planar patterns and the associated computer vision algorithms to recognize
them in an image. ARToolkit [7, 9] is a popular such system which contains a 2D
planar fiducial marker system, it is used in many Augmented Reality applications
and is used frequently in this paper for a basis to evaluate ARTag.

Metrics describing performance of fiducial marker systems are; 1) the false positive
rate, 2) the inter-marker confusion rate, and 3) the false negative rate. The false
positive rate is the rate of falsely reporting the presence of a marker when none is
present. The inter-marker confusion rate is the rate of when a marker is detected,
but the wrong id was given, i.e. one marker was mistaken for another. Finally, and
possibly the least serious, is the false negative rate, where a marker is present in an
image but not reported. The false positive and false negative rates are at odds with
one another, and represent a trade-off between missing a marker and seeing a non-
existent one. Another metric is 4) the minimal marker size which is the size in pixels
required for reliable detection. The smaller the marker needs to be in the image, the
larger the usable range from the camera the marker system can be used at.

ARTag is a bi-tonal system containing 2002 planar markers, each consisting of a
square border and an interior region filled with a 6x6 grid of black or white cells.
1001 of ARTag markers have a black square border on a white background, and vice
versa for the other 1001. Fig. 2 shows some example ARTag markers. The associated
algorithm for detection first locates quadrilaterals which may be perspective views
of the marker border, then the interior is sampled into 36 binary ’1’ or '0’ symbols.
Further processing is in the digital domain providing a non-linear response giving very
low false positive and inter-marker confusion rates. With ARTag, the probability of

4

Figure 1: Markers detected in an image. Qverlaid white border and ID number show
automatic detection.

falsely identifying one marker for another, or a piece of the background as a marker,
is a probability of < %0.0078. Fig. 1 shows ARTag markers being detected in an
image.

a 1 2 i48 232 61

Figure 2: ARTag markers. ARTag markers are bi-tonal planar marker patterns con-
sisting of a square border and a 6x6 interior grid of cells representing logic ’1” or 0.
12 out of the library of 2002 markers are shown.

2 Planar Marker Systems

Many of the practical machine vision systems used in industry use two dimensional
patterns to carry information in a manner similar to the ubiquitous bar code seen on
consumer products. The purpose is to carry information, not to localize as is needed
for applications such as augmented reality. Cybercode [15] is one early example of a
2D grid of black and white squares used to communicate digital information. The
US Postal Service uses the Mazicode marker to convey shipping information (Fig.3).
DataMatriz and QR (Quick Response) are two other examples designed to contain
information are used in industrial settings for part labelling (also shown in Fig.3).
The above three all use or have provision for error correction methods to recover
the data when some of the bits are incorrectly read. ECC200 [1] is a standard for
DataMatriz 2D patterns and uses Reed Solomon error correction, which can recover
from situations where part of the information read from the pattern is corrupted.
DataMatrix and QR are used for Direct Part Marking (DPM) to identify and convey
information along an assembly line.

DataMatrix, Maxicode and QR all have a common thread of encoding data using
binary values for reflectance, the pattern is typically bitonal reducing the decision

made per pixel to a threshold decision. This reduces the lighting and camera sensi-
tivity requirement and removes need for linearization of the signal (i.e. no attempts
are made to identify shades of grey). Another component is that of redundant infor-
mation allowing for error detection and correction to increase the overall success rate.
Error detection and correction is something not seen as much in computer vision as
in other fields such as telecommunications, and is a well understood class of methods
to statistically improve the data integrity rate to a very reliable level.

In general, DataMatrix, Maxicode and QR are useful for encoding information,
but are not as useful for fiducial marker systems for two reasons. Firstly they are not
intended for, and won’t function well, in situations with large field of views and the
perspective distortion that introduces. And when detected do not provide enough
image points for 3D pose calculation. DataMatrix can only adjust for affine warping
by using the 'L’ shaped locator, i.e. with 3 points instead of the 4 required to correct
for perspective distortion. Secondly they typically require a large area in the image
limiting the range at which the markers can be used.

Locating and identifying simple planar patterns is also used by several photogram-
metry, position tracking, and augmented reality systems where less information is
carried in the marker, typically only enough to identify it from others. In applica-
tions such as photogrammetry, the size of the marker is an issue. In general, the less
dense the information is in the marker, the less the minimum pixel requirement is
and as a result, the greater the range of distance that the marker can be from the
camera.

Small markers can be made by encoding a ring of segments around a circular
dot [10]. Several commercially available circular fiducial marker systems exist using
a single broken annular ring around a circular dot such as Photomodeler’s ”Coded
Marker Module” [2]. Naimark and Foxlin [13] describe a system extending the number
of rings. The number of possible markers is limited, the camera resolution will limit
the number of segments that the annular ring can be broken into. The false positive
and inter-marker confusion rates are not reported for these systems but due to the
small number of digital bits that can be encoded (15 bits for [13]), they will suffer from
high false detection and inter-marker confusion rates or small library sizes (if some
bits are used for redundancy) or most likely both. For AR and other applications
where not just the location but the pose must be determined, these markers are not
as useful due to the difficulty in determining the plane they lie upon. Determining
the camera pose involves simultaneous detection of several markers.

The distinguishing feature of systems designed for augmented reality such as AR-
Toolkit, ARSTudio [12] and Rekimoto’s Matriz markers. is that in many cases only
one marker is usually visible. Therefore the fiducial marker must have some distinct
points, at least four, so as to extract orientation with perspective distortion. AR-
Toolkit and Matrix, for example, use the quadrilateral outline to accurately locate

7

Data Matrix
(3 examples) (US Postal Service)

Maxicode QR (Quick

Response Code)

Intersense

) ARToolkit ARTag
ARSTudio (4 examples) (4 examples)

Figure 3: Several planar pattern marker systems. DataMatriz, Maxicode and QR are
industrial systems used for carrying data. The circular Intersense markers are used
in position tracking. ARStudio and ARToolkit are patterns designed specifically for

augmented reality applications. ARTag is the new marker system introduced in this
paper.

the four corner points to a sub-pixel accuracy. These four points are on the furthest
extent of the pattern to get as much orientation accuracy as possible.

Matriz is a digital marker system briefly outlined in 1998 in [14] that uses digital
encoding, a checksum, and a quadrilateral outline. Unfortunately there is not much
information on this system and Rekimoto appears to have left the quadrilateral border
out in further work building something similar to DataMatrix.

Zhang [17] and Claus [5] perform a survey of several fiducial marker systems
including ARToolkit with respect to processing time, identification, image position
accuracy with respect to viewing angle and distance. Matrix is mentioned but was not
available for his analysis. ARToolkit [7] is a marker system devised by Dr. Hirokazu
Kato of Osaka University, Japan, and supported by the University of Washington 1.
ARToolkit is popular because it is simple, relatively robust, and freely available. IS-
MAR [3] is an augmented reality conference where many applications use ARToolkit.

ARToolkit markers consist of a square black border with a variety of different
patterns in the interior. The quadrilateral black outline is used to calculate a ho-
mography to define a sampling grid inside the pattern which is sampled to provide a
256 (or 1024) element feature vector which is compared by correlation to a library of
known markers. ARToolkit outputs a so called confidence factor which is the result
of a normalized vector dot product between the sampled 16x16 (or 32x32) vector and
the stored prototypes. Presence of a marker is simply determined by a threshold
value on this confidence value.

ARToolkit is useful for many applications, but has a few drawbacks. The use
of correlation to verify and identify markers causes high false positive and inter-
marker confusion rates. The user typically has to capture prototypes of each marker
as seen with the camera and lighting of their application, plus adjust the greyscale
threshold in a trade off between these two rates and the false negative detection rate.
Only markers whose borders can be defined by this fixed threshold can be found.
Also, the uniqueness of the markers deteriorates as the library size increases. The
processing time also rises as that the normalized center region of each quadrilateral
must be correlated with all marker prototypes in the library. To address the four
possible rotations and possible differences in lighting, twelve prototypes are stored
for each marker. Owen [4] proposes an ARToolkit library based on spatial frequency
components to extend the library but ARToolkit’s inter-marker confusion rate still
restricts the library size.

2.1 Functionality of ARToolkit

ARToolkit is a widely used fiducial marker system for AR, it warrants a deeper de-
scription both to illustrate some of the computer vision issues and to serve as a

"http:/ /www.hitl.washington.edu/artoolkit /

comparison to the proposed new ARTag. In many ways, ARToolkit represents the
state of the art for AR marker systems, at least for AR marker systems available to
most researchers and developers. ARToolkit [7] is widely used [3] by AR and Human
Computer Interaction (HCI) systems due to it’s available source code and ubiquity
of use.

ARToolkit markers (Fig. 3 middled bottom) are planar and can easily be printed
out and mounted to a flat card or wall. The markers consist of a square black
border enclosing a pattern that is compared to several stored patterns. The marker
recognition occurs in two stages; firstly recognizing quadrilateral boundary contours,
and secondly by correlating this interior pattern with the known patterns.

ARToolkit first finds black quadrilateral borders by finding connected groups of
pixels below a set level, the contours of these groups are found and those contours
with four straight sides are identified as potential markers. This greyscale thresholding
method is also used in Matriz [14]. These first few stages are shown in the middle
three images in Fig. 4.

Figure 4: The first few stages of ARToolkit marker extraction. ARToolkit takes an
input image and a grey level threshold parameter and reports the location of markers
detected in the image. Left to right; 1) the original image, 2) connected components of
pizels with a grey level less than the threshold parameter, 3) external border contours
extracted from the connected regions, 4) quadrilateral contours identified and their
corners located, and 5) extracted markers labelled and overlaid over the input image.

The corners of the quadrilateral contours are used to remove the perspective dis-
tortion and bring the internal pattern to a canonical front view. The four corners are
used to define a homography which is used to sample a N x N grid of greyscale values
inside (typically 16 x 16 in the original version although some users modify this to 32
x 32). This region is correlated with several reference grids loaded in from pattern
files associated with each marker id. ARToolkit outputs a so called confidence factor
which is the result of a normalized vector dot product between the sampled 16x16 (or
32x32) vector and the stored prototypes. Presence of a marker is simply determined
by a threshold value on this confidence factor.

To use a marker in ARToolkit, one needs both a printable image of the marker to
mount on a flat panel, and a corresponding pattern file. The pattern file contains 12
reference grids, which are three versions of each of four possible rotation positions.

10

The three versions are intended to be taken at different lighting and distance con-
ditions to span the range of possible appearances of the marker when seen by the
camera. Instead of rotating the sampled N x N grid, there is instead four pre-rotated
versions available in the pattern file. Fig. 5 below shows three markers and what the
data inside their corresponding pattern files look like.

. _3 =& 3 &
B B
I}.— == o f—

Figure 5: ARToolkit markers and their corresponding pattern files. (Left to right);
1) the Hiro marker image, 2) the pattern file patt.hiro, 3) the Kangji marker image,
4) the pattern file patt.kanji, 5) the Samplel marker image, and 6) the pattern file
patt.samplel.

3 ARTag

ARTag is a planar pattern marker system that has 2002 markers consisting of a square
border like ARToolkit, but the detection of the border is edge-based and processing
of the internal pattern is performed with a digital approach instead of correlation.
The square border used in both systems allows them to be used for AR since the four
prominent corner points allow the full extraction of the 6 degree of freedom (DOF)
of the relative marker to camera pose (assuming the camera focal length is known).

As with ARToolkit, ARTag locates potential marker projections in an image by
first finding the four sided border contour, and using the corner points to define a
homography to create a sampling grid to analyze the interior pattern to determine if
it’s a marker pattern and to identify it if so. The interior is sampled to determine a
digital ’0’ or "1’ for each grid point and subsequent processing is in the digital domain.

ARTag finds quadrilateral contours with an edge based method, and does not need
a greyscale threshold as does ARToolkit.

Several ARTag markers are shown in Fig. 6. The whole marker is 10 x 10 units,
with a border of thickness 2 units leaving 36 cells in the interior to carry information.
Each cell is only black or white and carries one bit of digital data. Thus a 36-bit word
can be extracted from a camera image of the marker once the boundary is determined.

3.1 Quad Detection

Quadrilateral contours are located in the image which may belong to the outside
border of a marker. They are found in ARTag with an edge based method, edge pixels

11

Figure 6: ARTag markers. 36 out of the range of 2002 markers in the ARTag marker
library. A 10-bit code is contained in the interior pattern, protected by checksums
and forward error correction (FEC) to greatly reduce false positives and inter-marker
confuston. Unlike ARToolkit which only uses a black border on a white background,
ARTag uses both polarities of border and background to extend the library size. The
inner codes are repeated for markers 1024-2047 where the border is white on black.

12

are thresholded and linked into segments, which are in turn grouped into ”quads”.
The four corners of the quad boundary are used to create a homography mapping
to sample the marker interior. Fig. 7 shows an image, its extracted line segments,
quads, and quads in which ARTag marker codes were found in the interior.

Figure 7: Quad Eztraction: finding ARTag markers. (Upper left) original image, (Up-
per Right) straight line segments found in image, (Lower left) line segments grouped
into quadrilaterals, (Lower right) ARTag markers found from quadrilaterals whose
interiors contained a valid ARTag code. Note that Marker #2 (upper right of camera
image) did have its quadrilateral border located, but failed the interior validation due
to the pen occluding too many of the data bits.

The edge based approach gives some performance improvement over the greyscale
region thresholding approach of ARToolkit. In ARToolkit, groups of connected pixels
below a specified threshold are found, and those possessing a quadrilateral boundary
are used as potential markers. A single threshold value will not work for markers under
different illumination and image capture conditions, even within the same image.
Quite often users of ARToolkit have modified it to perform local thresholding or have

13

called the marker detect function multiple times with different thresholds for a single
image. Having a spatial derivative of greyscale intensity threshold instead of a simple
greyscale intensity threshold allows markers to be found under less controlled lighting
conditions. Indeed, the ’white’ level of one marker edge may be even be darker than
the "black’ level of the other side and the marker still be detected.

Another advantage to ARTag’s edge based approach is the ability to still detect
marker outlines in the presence of occlusion. In Fig. 7, two of the markers (ID’s 103,
104) have a side broken or a corner missing but are still detected by heuristics of line
segments that almost meet. Fig. 7 (lower right) shows the occluded quads drawn
with dotted lines indicating that they were not obtained from the perfect grouping
of four segments.

ARTag has a greater immunity to lighting variation than ARToolkit, an example
is shown in Fig. 8 where all markers on a panel of varying illumination are detected
by ARTag whereas only one section is visible at a time with ARToolkit.

VA blsample? sample2 alpha_a

alpha_d Aipha_x

alpha_b samplel alpha_

Figure 8: Marker detection with challenging lighting. ARToolkit performance (Left)
and (Middle) demonstrating how a threshold based method cannot recognize all mark-
ers simultaneously. (Right) shows how ARTag recognizing all markers. The recogni-
tion of a marker is indicated by the overlaid box and number.

ARTag also can detect markers in the presence of occlusion, a side can be broken
and several corners can be missing by occlusions by objects or the image boundary,
whereas any slight disturbance in the boundary of an ARToolkit marker results in a
failed detection (Fig. ?7.

To further reduce the false negative rate, ARTag searches for quads at three scales.
The line segment extraction and grouping into quads is done on the original image
size, on a resampled version of half the width and height, and on that of a quarter
size. This allows the detection of borders which may be blurry and not have an spatial
derivative above the threshold. 2

2To speed performance on lower processing power systems, the quad detection can be turned off
for the full resolution speeding up ARTag by about 3-4 times.

14

L

Figure 9: Marker detection under occlusion. ARToolkit performance (Left) and (Mid-
dle) shows how recognition is lost if even a small piece of the border is occluded.
(Right) shows how ARTag markers can be recognized even despite large occlusions.

3.2 Digital Processing

Once quadrilateral border contours have been located, the internal region is sampled
with a 6 x 6 grid and assigned digital symbols ’0’ or "1’. The threshold applied is
derived from the intensities found around the quad border. All subsequent processing
to verify and identify the marker is performed digitally. Four 36-bit binary sequences
are obtained from the 2D 6 x 6 digital symbol array, one for each of the four possible
rotation positions. Only one of the four sequences may end up being validated in the
decoding process. The 36-bit binary sequence encoded in the marker encapsulates
a 10-bit ID using digital methods. The extra 26 bits provide redundancy to reduce
the chances of false detection and identification, and to provide uniqueness over the
four possible rotations. The Cyclical Redundancy Check (CRC) and forward error
correction are digital methods used to identify if the 36-bit code is part of the ARTag
marker set, and to extract its ID.

These methods use a digital algebra called GF-2 or Modulo-2 mathematics and
involves concepts of addition using logical XOR, convolution and deconvolution op-
erators, and generating polynomials which are prime numbers in this base 2 number
system. It is beyond the scope of this paper to explain other than to describe that
in practice one manipulates short binary symbol sequences with various operators,
the most important one to ARTag marker decoding is the deconvolution/division
operator. The reader is directed to [16], digital communications and storage texts,
and standards documents for more information. In two stages of decoding ARTag
markers, digital codes are divided by specially chosen binary polynomials where the
dividend and remainder are both used.

The system can be abstractly described as a communication system, where a 10-
bit ID is attempted to be sent through a medium of image capture to be received
by the ARTag vision software. The creation of a marker pattern from an ID is the
encoding phase, and the recognition of an ID from the extracted 36-bit code is the

15

decoding phase.

FEC
Polynomials
Convolution

ARTag

XOR CRC-16
sub-ID =p - e
(0-1023) MASK Convolution

Figure 10: Digital encoding process : creating ARTag markers. A sub-ID number
(the lower 10 bits of the ARTag ID) is converted to a 10-bit binary sequence which
goes through several stages to produce a 36-bit binary sequence which is encoded in
the marker as white and black cells.

There are three main stages for encoding when creating the 2D pattern to mount
in the environment, with their operations performed in reverse when finding ARTag
markers. The digital encoding operations are shown in Fig. 10 below. An ARTag
marker image is created by filling the marker according to the 36-bit sequence created
by this encoding from an input ID number 0-2047 (excluding 682 and 1706). The ID
range 0-2047 is spanned by an 11-bit binary number, the MSB of which decides if the
border will be black on white or vice versa. The remaining lower 10 bits are called
the sub-ID herein.

The printing of the marker pattern, the reflectance of the marker, lighting, other
objects in the scene, light capture and digital image formation by the camera in-
cluding noise, and perspective pose of the marker all constitute the ”communications
medium”. After a 6 x 6 grid of binary symbols is extracted from the image, the digital
decoding steps outlined in Fig. 11 are performed and the verdict of ARTag marker
presence or not is decided, and the ID reported if present.

-) Extracted
_’SG-bit - Try all 4 N\ =) e F. E‘c‘ - CRC - XOR ARTag
- rror ection
chde Rotations) =b \ _.; correction Deconvolution MASK sub-1D
- (0-1023)

Figure 11: Digital decoding process : confirming and identifying ARTag ID’s in the
binary pattern from the interior of an ARTag marker. The binary pattern from the
marker as seen in the camera image is converted into four possible 36-bit codes for
each possible rotation. Fach code passes through the FEC stage which can detect and
correct some bit errors, the result is then analyzed by a CRC checksum-like procedure
to verify if it belongs in the ARTag marker set. If it is, a payload 10-bit binary number
(sub-ID) is extracted and combined with the border polarity and reported as a located
ARTag marker.

The XOR operation is used to scramble the codes a bit since it’s expected that

16

users would use the lower numbers 0,1,2,... etc and to make the ID of 0 usable. The
CRC-16 polynomial (also known as CRC-CCITT in the fields of data storage and
communication) is 2'® +z'? + 2° + 1 and is applied by convolving the XOR’d ID with
the binary string 10001000000100001. The deconvolution in the decoder is similar
to a division operation yielding a dividend and remainder. The remainder must be
0 otherwise the code is considered to not be from an ARTag marker, only 2% of the
possible binary sequences pass this test protecting against random codes found from
quadrilateral objects in the camera view that are not ARTag markers.

The forward error correction (FEC) decoding block is the most sophisticated dig-
ital processing component of the ARTag system and allows several erroneous bits in
the input 36-bit code to be detected and repaired. This increases the false positive
rate by a bit but improves the false negative rate by recognizing codes that are close
to a correct code, that are likely an ARTag code with a sampling error due to sources
such as an imperfect threshold, misalignment of the detected quadrilateral border,
specular reflections inside the pattern, partial occlusion, and general image noise.

Two ARTag ID numbers, 682 and 1706, are absent from the ARTag marker library
reducing the library size to 2002. The reason for this is that the sub-ID 682 is a
degenerate case that leads to a 36-bit code containing all 0’s. This would translate
to a fully black or white interior which will be frequently falsely detected in the
environment. The library is further reduced to 2002 markers by the removal of 44
ID’s as shown in Section 4.2 to improve the inter-marker confusion rate.

4 False Positive Marker Detection

One failure mode of a marker detection system is when a marker is erroneously re-
ported when it does not exist, i.e. the system reports that a marker is present when
it is not. This is a problem with ARToolkit (Fig. 12), reducing false positives is the
motivation for much of the effort spent on implementing ARToolkit. Improving per-
formance usually means creating the ARToolkit pattern files for a specific application,
using the same camera and lighting as used in the application.

ARTag processes the internal pattern differently, it is sampled and processed as
a digital code and has a much lower false positive rate which can be mathematically
described. 1001-4 = 4004 of those digital codes map to a correct ARTag marker
viewed from one of four orientations. There are 36 points sampled within the pattern,
giving 2%¢ = 68.7 billion digital codes from an arbitrary randomly filled quadrilateral.
The forward error correction accepts %35.6 of them (24.5 billion) as ”correctible”. A
correctible code is one that either contains 0-N error bits from a correct ARTag code
(N=number of bits the FEC can correct, =2 in the first version of ARTag released),
or one that contains more error bits but fools the FEC into thinking it was corrected.

17

Figure 12: Examples of ARToolkit false positives. Detected markers are overlaid over
the image. Black quadrilateral regions, such as between the keyboard keys, or the
computer monitor or doorway have interior pizels that correlate to one of the marker
definitions with a c.f. value above the threshold resulting in a false positive detection.

With N=2, each valid ARTag 36-bit code would be mapped from 1+ 36 + 362 = 1333
36-bit, codes, yielding 4004-1333 = 5.34 million 36-bit pattern interiors which would
cause ARTag to report the presence of a marker. So the probability of a false positive
detection from a random 36-bit number is 253_‘;:}82 = 7.8-107% = %0.0078, or about one
in 12,800. Therefore a non-marker quadrilateral has a %0.0078 chance of producing a
false positive marker event assuming equal likelihood of pattern interiors (which is not
usually the case giving an even more rare probability). Most natural (non-marker)
quadrilaterals in the environment are solid black, or contain much less entropy than

the ARTag pattern interiors.

A comparison experiment was performed with several image sequences which do
not contain any ARToolkit or ARTag markers to collect statistics on false positives.
Both the ARToolkit code and the ARTag library were compiled into one program
so that they both saw the exact same image frames. Table 1 shows the results for
marker detection with video from several cameras which were moved around our lab
in which no ARToolkit or ARTag markers were present, thus any marker detection
is a false positive. A movie was also used as an image sequence in order to get more
random and varied imagery than video footage from our lab.

Looking at the results in Table 1, one could suggest simply raising the threshold
c.f. factor to 0.90 and thus avoid all false positives for ARToolkit. However, with the
same conditions, the c.f. had to be lowered to 0.75 to obtain a practically usable false
negative rate.

No ARTag false positives were seen in any of the experiments, or noticed when
using the system, however the probability is still non-zero, about ﬁ as mentioned
above. However, this is the probability after a quadrilateral has been found assuming
equal likelihoods of all 36-bit codes. Whereas most quadrilateral shapes in the envi-
ronment will likely not have a full frequency content as the ARTag patterns do (the

18

Imagery ARToolkit ARTag
Seq- | Num. || cf.=]|cf=|cf=|cf=
uence | Frames || 0.50 | 0.70 | 0.80 | 0.90
A 2723 175 15 9 3 0
B 3514 235 9 3 3 0
C 3318 401 70 0 0 0
D 1450 135 88 70 27 0
E 1318 68 14 3 0 0
F 1318 68 14 3 0 0
G 2893 410 3 0 0 0
H 215625 || 7917 | 408 | 112 0 0

Table 1: Comparison between false positive detection rates between ARToolkit and
ARTag in several image sequences. Different cameras were moved around a room
devoid of either markers so that all detections would be false positives. A single
common set of ARToolkit pattern files were used. Note that no false positive ARTag
markers are declared in any of the frames. A-G are tests with various cameras aimed
around a lab scene, H is the movie ” Bladerunner” (Ridley Scott 1982).

pseudorandom nature of the convolution codes used give a wide use of the spatial
frequency domain). In fact, most of the time a quadrilateral shape from the envi-
ronment is mostly all dark or all white. Therefore the probability of false positive
detection is less than %0.0078 explaining why it is not unexpected to see zero false
positives even in an experiment as large as conducted in Table 1.

It is useful to compare ARTag to Rekimoto’s Matriz [14]. There was mention of
a checksum, and uses a 5x5 grid, giving 25 data bits of which he claims there was a
library size of 2'6 different markers which would indicate a 7-bit checksum (25 bits
minus 2 to account for 4 rotation positions and 16 for the ID equals 7) yielding a
false positive rate of ﬁ = %0.78 which is 100 times more likely than ARTag’s false
positive rate. Also, Matrix appears to have no error correcting capability and so will
have a higher false negative rate (i.e. a lower detection rate). Matrix does not seem
to address the concept of inter-marker confusion, without such an analysis it is not
unlikely that some markers may be too similar to others in the library. It is perhaps a
loss to the AR community that Matrix was not developed further, and used instead of
the pattern correlation in ARToolkit. People were not using Matrix for AR projects,
and was the existence of the system itself was only discovered after the development
of ARTag. Matrix would likely perform better than ARToolkit for the false positive
and inter-marker confusion rates.

19

4.1 Uniqueness of Markers: Reducing Inter-Marker Confu-
sion

As well as a low false detection rate, a good marker system should have a low rate
of confusion between markers. The user should have a high confidence that one
marker won’t be mistaken for another. In the real world one cannot have 100%
but with proper marker system design the rate that this occurs can be minimized,
ideally to very low levels that don’t appear in practice. Owens et al. [4] explores the
similarity between ARToolkit markers with the Mean Squared Error (MSE) approach
and proposes a library of markers based upon spatial frequencies in an attempt to
address this problem.

ARTag does not use image correlation as does ARToolkit, instead the internal
pattern is sampled into a digital code and processed from there as digital symbols.
The inter-marker confusion rate can be analyzed by considering the probability of
mistaking one code of digital symbols for another. A measure of how easily two binary
codes can be confused with each other is to calculate the Hamming distance[8], which
is simply the sum of the differences between two digital sequences. For example,
if the sequences 01001 and 00011 are lined up, one can count two bits which are
different thus they are said to have a Hamming distance of 2 from one another. The
probability of an inter-marker confusion event can be calculated using knowledge of
the Hamming distances within a marker set.

Each ARTag marker pattern can be turned into another if the right '1’ and ’0’
symbols are changed. Ideally the Hamming distance should be as high as possible
between all possible markers, taking rotation and optionally mirroring into consider-
ation.

The probability that a digital code can be mistaken for another in a set of codes
is given by a summation of the probabilities that the given marker can be falsely
recognized as each of the other codes in the set. If there are 36 bits in a code set,
such as our system, and the Hamming distance between code A and code B is 10,
then the probability of A been seen as B (or vice versa) is the probability of exactly
the correct 10 bits been flipped which is p'®(1 — p)?® where p is the probability of a
bit been flipped. In our case, each marker contains a sub-ID code encoded in one of
four orientations, so we need to add together all four probabilities. If A can be turned
into B with a Hamming distance (H.D.) of H.D.=10 with no rotation, of H.D.=12 at
a rotation of 90°, H.D.=16 at 180°, and H.D.=24 at 270°, then the total probability
is: pl%(1—p)® +p'2(1—p)* +p'%(1 —p)2 +p?* (1 — p)'2. If we also consider mirroring,
the case that B is seen in a mirror, then we need to add four more terms.

If we want to find the probability that A can be mistaken for any other code
in the set, we add these four (for rotation only) or eight (rotation and mirroring)
probabilities for each marker. We can add the probabilities together by grouping

20

together all the cases of equal Hamming distance. Thus we can express the frequency
of each Hamming distance by making a function, or histogram, of Hamming distances
HD(n) where HD is the number of cases where a Hamming Distance of n occurs.
Thus we can use Eqn.2 where the bit error rate p is decoupled from the inter-marker
Hamming distances. Since p depends on many factors in the system, the Hamming
distance histogram can be calculated for the marker set itself, independent of the
system.

To calculate the final probability P(# A) that a marker A can be mistaken for
another (in the set used in a system), the bit error rate p in Eqn.1. p(n) and ¢(n)
are the probability of n bits being falsely and correctly detected, respectively. If the
bit errors are uncorrelated and independent events, then the probability of n bits
toggling falsely is p(n) = p™ and not toggling is ¢(n) = (1 —p)" allowing us to rewrite
the probability as Eqn. 2.

The probability of inter-marker confusion is now divided into two parts; the system
dependent probabilities (noise, etc), and the component due to the distinctiveness of
the markers themselves represented by the Hamming distance histogram. In this way,
we can optimize, i.e. reduce, the probability of inter-marker confusion for any system
by optimizing this histogram H D(n). We seek to reduce the frequency of those of low
values of n. The more that the histogram can be pushed out to the right (if plotted
as in this paper), and the lower HD(n) is for the first few (low n value) non-zero
values of HD(), the more immune to inter-marker confusion a marker set will be.

P(# 4) = 32 HD() - p()g ™" (1
P#A) = Y. HD(n)-p"(1 = p)*™" @

This Hamming distance histogram will be different for each candidate symbol A.
If the histograms are added together for all markers in the set, Eqns.1 or 2 can be
used to find the probability that any marker in the set will be mistaken for any other
marker in the set, giving a single probability of inter-marker confusion.

When applying Eqn.1, the first few non-zero entries (for low n) will dominate the
calculated probability. This defines a measure of the total marker set to optimize:
measure the Hamming distance between every possible marker and all others in all
four possible rotation positions, aggregate this into a histogram of Hamming distances,
and attempt to reduce the minimum non-zero value and area under the first part of
the histogram.

This was done considering rotations and reflections between all possible combina-
tions of markers to select the most optimal FEC polynomials and to select a subset

21

of 2002 ID’s from the possible range of 2002 [6]. For example sub-ID’s 75 and 692 are
not recommended due to having a Hamming distance of only 4 when 75 is compared
to 692 rotated 90° ccw. This reduces the ARTag library to 1001 sub-ID’s, which
translates to 2002 possible markers using both polarities of borders.

For most applications, all 2002 markers will not be necessary and hence a priority
order list was made. A user takes the top k£ markers in order from the top of this list
to obtain a low inter-marker confusion rate. In this way an application can be made
very immune to inter-marker confusion (Fig. 14).

HAMHMING DISTAMCES BETHEEM ARTAG MARKERS

First 58 Recommended sub_ID’s (63,791,326,154,...231) groTaNCE NUMBER
a: a
1: a
2868 — 2: 8
3: a
< : a
26088 —| A =
B : a
2348 —| - 7 8
2K B b
9: a
2og8 —| oo @
11: a
igz2e —| 12 : 454
13: a
14: iiz8
1568 —| i o
16: ao51
iz88 —| i17: 8
1K 18: 2678
1K 19: 8
1848 — LR 24146
21: 8
788 —| 22 1848
23: 8
24 357
B 454 25: a
357 26 : 83
268 —| 27: 8
33 o8- iz
iz 1 z9: 8
B_||||||||||||||||||||||||||T|T ||| 38 : 1
a a5 35 31: a
32 8
33: 8
34: 8
35: 8
36: 8

Figure 13: Cumulative histogram of Hamming distances between markers considering
rotation and reflection. Histogram considering the first 50 from the recommended list.

22

4.2 Designing the ARTag Library

When applying Eqn.1, the first few non-zero entries (for low n) will dominate the
calculated probability. This defines a measure of the total marker set to optimize:
measure the Hamming distance between every possible marker and all others in all
four possible rotation positions, aggregate this into a histogram of Hamming distances,
and attempt to reduce the minimum non-zero value and area under the first part of
the histogram.

This measure was taken into account when designing the system. Using the system
shown in Figs. 10,11 we see the parameters are the 10-bit XOR mask, the checksum
convolution code and the convolution codes used for the FEC. These could be vari-
ables in designing the marker system. The XOR mask does not affect the Hamming
distances due to the linearity of the GF-2 operators used (it’s effect can be moved to
the output as XOR’ing with a fixed 36-bit XOR mask), the CRC-16 convolution poly-
nomial was kept constant due to its successful use in communications and data storage
[16]. This leaves the choice of convolution polynomials chosen for use in the forward
error correction as variables to change to obtain an optimal histogram of Hamming
distances measured for the full marker set. All possible combination were tried and
the FEC polynomials that produced the best hamming histogram considering only ro-
tation were chosen. The negative phenomenon of mirroring was considered less likely
to occur and so not considered in the Hamming distance calculations at this stage to
relax the constraints. Mirroring was addressed (Section 4.3) when non-recommended
sub-ID’s were chosen (Section4.5).

Since the same internal patterns are used for ARTag ID’s 0—1023 and 1024 —1047,
the following histograms in this paper are only calculated within the sub-ID set 0-
1023 since the markers border of white/black or black/white separates them into two
sets which are very unlikey to be confused with each other.

The best Hamming distance histogram was chosen both for the minimum Ham-
ming distance, and the area of the histogram in the first few entries at and after this
minimum distance. This histogram is shown graphically and as a table in Fig. 14.
The minimum Hamming distance is 4 symbols, there is six combinations that are that
close. The peak of the histogram is at a Hamming distance of 18, due to the total code
size being 36 bits and the use of convolution polynomials that have a pseudorandom
nature. The histograms produced by several other choices of convolution polynomials
are shown in Fig.15.

Looking at Hamming distance histograms of the chosen system in Fig. 14 and the
best four second place contender systems in Fig.15, we see they all start with values
at n = 4, however the chosen system has six elements at this distance as opposed
to only one in the other four contenders. This would seem contrary to the stated
goal of decreasing the first few histogram bin entries, however, not only the first bin

23

entry was taken into consideration. These four other choices were not chosen due to
the higher value at n = 10, the first few combinations at n = 4 can be removed by
removing from a recommended marker list the markers that cause them. The five
choices all had about the same value at n = 6 and n = 8, but the chosen system had
the least number of marker pairs at a Hamming distance of n = 10. It was felt this
would have a greater effect on a probability calculation and overall system robustness
than the n = 4 markers. The markers who contributed to the n = 4 bins could be
simply removed from use, since taking a few out from the total library size of over
2000 markers would not affect system usefulness. These markers were not declared
illegal, as is sub-ID #682 (markers #682,1706), but rather were put on both the
not-recommended list (see Table 3) and moved down on the order of recommendation
list (Table 2).

4.3 Adressing Reflections

A marker system should not confuse markers if they are seen in reflections, one marker
sub-ID should not be mistaken for another if seen in a mirror. Therefore the Hamming
distance histogram should be calculated for the case of the 6x6 codes being mirrored.
It is assumed that in most cases a system would not want to detect markers unless
they are seen un-mirrored, and so the Hamming distance between a marker and its
reflection should be high also.

The Hamming distances of mirrored markers were not added to the histograms
in Section 4.2 since they are expected to occur less often, and bringing them into
the initial design analysis would add a constraint that would result in a system with
a reduced inter-marker confusion immunity for the most common event of markers
seen directly without a mirroring surface in the marker-camera optical path. How-
ever, their effect is analyzed and used in creating some recommendations in choosing
markers.

The Hamming distance histogram is shown in Fig.16. The entry at n = 2 is for
sub-ID #270 which is close to a mirrored image of itself by only two bits different.
It thus appears on the not-recommended list (Table 3), and appears last in the rec-
ommended order sequence in Table 2. Likewise, 9 other sub-ID’s were placed on the
not-recommended list and placed low in the recommended order sequence to allow
an ARTag user to avoid having these few bad combinations raise the inter-marker
confusion probability rate.

4.4 Recommended Subset of the ARTag Library

The range of ARTag ID’s is 0-2047 with 2 forbidden values; 682 and 1706, leaving
2046 values allowed for use. A further 44 ID’s are not recommended to decrease

24

688388

353888

437708

442488

387188

331888

276588

221288

165988

iiecaa

553288

HAMHMING DISTAMCES BETHEEM ARTAG MARKERS

444K 433K
223K 221K
84K 3K
11K I
T

Equations 1 & 4

553K

IIII|IIII|IIII|II
15

1K
T

83 2
T T

rr
a5

S
o
3
3
ey

fuut
Ll
-
i
E
Ix}
m

LU= LN ED

x
-]

HUMEER

=B - - - - -

™
]
[-- I -}
=]

a
11474
a
g4212
a
223712
a
444741
a
553992
a
455958
a
221197
a
Y4868
a
18712
a

1374

-]
2SS MNMIND

Figure 14: Hamming distances between ARTag markers. Shown as a histogram with
the number of marker pair combinations displayed as a function of the Hamming

distance.

For example, siz combinations of two ARTag markers (out of the set of

1023) can be changed to be identical to the other (at a specific orientation) with 4 bit
changes. Likewnise there are 1387 pairs of patterns that differ by 10 bit changes.

25

682800 —

548600 —

493200 —

438400 —

383600 —

328800 —|

274600 |

219200 |

164480 |

189680 —

54800 —

8 —

614900 —

559000 —

583100 —|

447200 |

3913600 |

335480 —

279500 —

223600 —

167708 —

111800 —

55900 —

e |

HAMMING DIsTnul:Es BETNEEN ﬁRTﬂB MARKERS
Equations 8

548K
arkflaaax
223K 233K
81K 78K
1 95 1k’ Q¢ 13Ky g8 7
R R e L R e e e R, R TR T e S e Y
s 10 15 20 25 38 35

HAMHING I)Is'mm:Es BETMEEN nRTnE MARKERS

cEseeT
399K
437K K
2389K] 238K
69K T3K
15K 16K
Loy maKioss
o AR Resrs
3 ie i3 28 25 38 33

e
>
=4
=

x
e

o,
o
=
i
=
o
I

CRNONADN D

MUMBER

cosoUoRa

687200 —

552600 —

496808 —

441600 —

386400 —

331200 —

2766880 |

azpgen |

165680 |

118480 —

55200 —

8 —

611608 —

556000 —|

580480 —|

444808 —|

agazen |

333600 —

278600 —

222400 —

166808 —

11iz88 —

55600 —

e |

HAMMING DISTANCES BETNEEN nRTﬂls MARKERS
Equations 1

s52K
461K
SEETS
238K
247K]
80K 75K

1 asakidK 13Kk 84 2
e D T e T B e R

s 10 15 20 25 38 35

HAMHING DIsTﬁm:Es BETMEEN nRTnE MARKERS

306K
451K433K
231K] 226K
70K F2K
16K 13K
Loz 'y I-§¥E
S Btk tiE R
3 i8 i3 28

e
>
=4
=z

x
=

.
o
=
1
x:
o
Im

CRNONADN D

HMUMBER

Figure 15: Hamming distances between ARTag markers with different FEC polyno-

maials.

The FEC polynomial set chosen in Fig. 1/ was selected for ARTag due to the

minimum area below a Hamming distance of 11 bits, even though the selected set has
6 entries in the lowest Hamming distance=4 bin. There are siz possible polynomials
available, giving 15 possible sets for use when correcting up to two bit errors in a
marker. These four histograms plus Fig. 14 constitute 5 out of these possible 15 sets.

26

688388

353888

437708

442488

387188

331888

276588

221288

165988

iiecaa

553288

HAMHMING DISTAMCES BETHEEM ARTAG MARKERS

Hhen Seen
Equations 1 & 4

ia

443K

231K

15

in Mirror

231K

TBK

iKiig 3
TlT T

38

a5

S
o
3
3
ey

fuut
Ll
-
i
E
Ix}
m

LU= LN ED

x
-]

HUMEER

=~ - - -]

[
-
M
ka

a
15541
a
TE422
a
231621
a
445623
a
5353635
a
444559
a
231651
a
TED28
a
15495

Figure 16: Hamming distances between ARTag markers in ARTag system when mark-
ers are viewed in a mairror. If a reflection of an ARTag marker is seen, the 6z6 binary
pattern extracted from the pattern will be flipped. None of the markers will be confused
with each other, or with itself (i.e. won’t be detected in the mirror) with a Hamming

distance less than 4. Of the

27

the inter-marker confusion rate. 22 sub-ID numbers were identified from the above
Hamming distance experiments, which translates into 44 ID’s (due to the white/black
and black/white border polarity). 12 sub-ID’s are not recommended because they
map to another with only a Hamming distance of 4. Another 10 are chosen from the
mirror image Hamming distance histogram, these resemble too closely themselves or
another marker when seen in a mirror. A good marker system should only recognize
a marker when seen directly, not in a reflection. For example, sub-ID 270 has a
Hammming Distance of only two to a reflection of itself.

The most recommended markers follow in Table 2.

The least recommended codes, chosen for their Hamming distances to themselves
or other markers taking rotation and mirroring into account are listed below in Table
3 along with their reasons. If possible, it is advised to not use these.

In summary of the inter-marker confusion rate analysis; it was performed to make
design decisions within ARTag, and was used to provide a way to the users to choose
a marker set to minimize this condition.

The probability of this undesirable event occurring was shown to be divisible into
a system dependent, and code set dependent component. The latter is represented
with a distribution of Hamming distances H D(n) between marker sub-ID’s, which are
an aggregate sum of the number of bit changes n it takes to confuse one marker with
another. Formulae (Eqns.1,2) for calculating the inter-marker confusion rate using
this histogram were presented.

Different histograms were shown, depending on whether they considered the phe-
nomenon of markers been seen in a reflection or not, and were made for different
marker sets. All of the histograms contained the inter-marker Hamming distances
for all four possible relative rotations between each marker pair considered. The set
of all 1023 sub-ID’s were considered without mirroring to select which FEC convo-
lution polynomials would be used in ARTag. A histogram involving mirroring was
calculated for all 1023 sub-ID’s and the most problematic markers were put on a
not-recommended list (Table 3) in [6]. With ARTag Revl, these were simply declared
as illegal, as is 682 and 1706. Thus the library size is reported herein as 2002 markers
as opposed to 2046 as in [6].

For most applications, all 2002 markers will not be necessary and hence a priority
order list was made (available in the downloadable ARTag library, the first 72 elements
of which are in Table 2). A user takes the top k& markers in order from the top of
this list to obtain a low inter-marker confusion rate. One way to do this is to call
the ARTag library function artag_get_id() function sequentially. This can be done
by replacing ARToolkit’s init_artoolkit() pattern loading function if one is modifying
an existing ARToolkit application. An example of the benefit of taking the sub-ID’s
from this list instead of choosing them arbitrarily was shown in Fig.17. Here the
Hamming distance histogram was calculated for a marker set containing the first 50

28

HAMMING DISTANCES BETHWEEN ARTAG MARKERS

RN HAMMING DISTANCES BETWMEEN ARTAG MARKERS RN
Using all sub-IB’s B8-1823 (excluding 682} SRS HUMBER Excluding 22 non-recommended sub-1D’s P e MUMBER
8: a 8: a
1: a 1: a
1217788 — 2: i 1166088 — 2: a
3: 0 3:]
a: 13 a: a
1107680 — T8 5. a 1060800 — LR apk 5. a
6: 221 6: 212
996300 — T a 954080 — T a
8: 3329 8: 3193
EELIN SULLS 8: a 852K@B62K 8: [}
882600 = i8: 27015 gageee ie: 25925
11: [11]
774980 —| 12: 160634 742880 —| 1z2: 153778
13: 13 a
14: 455333 14: 435912
664280 — is- a 636800 — is- °
16: 890364 16: 832622
553588 —| i7: a 538088 —| i7: a
18: 1187627 18: 18668458
455K] 452K 19: B 435K] 433K 19: a
Hzeen 20: 280517 Az1008: 20: 862081
21 24 a
332188 | 22: 452848 318800 | 22: 433623
23: 8 23 8
221408 24: 150596 212608 24: 144173
= 25: a = as5: a
186K 158K 26: 34207 L3sK 144K 26: 32758
118708 — 27: a 186000 —| 27: a
28: 3202 28: 3073
34K 32K
1 13z213k2IF 3K204 5 25:) 2123k23K m K199 5 29: a
e T e e B B e R B 38: 284 e B B e B 38: 199
[5 18 15 28 25 EL] 35 A e [5 18 15 28 25 30 35 A1 9
32: 5 3z2: 5
33 a 33: a
34 a 34: a
as a as: 8
36 B 36:]
HAMMING DISTANCES BETWEEN ARTAG MARKERS R HAMHING DISTANCES BETWEEN ARTAG MARKERS s
First 50 Sequential sub—ID* FARHINE HUMBER First 56 Recommended sub_ID‘s (63,791,326,154,...231> gfThNCE HUMBER
[a e: 8
1 a 1]
2860 — 2 a 2860 — 2 a
3: a 3: a
4: a 4: 8
2608 —| 2K 5. a 2608 —| 2K 5. 8
- 6 2 6 a
2348 — T a 2348 —| 2K T]
8 14 - 8 8
9: a 9:]
20886 10: 188 2086 10: 0
1K 14: a 14: a
1828 | 12: s98 1828 | 12: 454
13: 8 13 [
14: 1383 14: 1128
1568 — 15, a 1568 — 15. a
1K 16: 2363 16: 2251
1300 —| 17: a 1380 —| 17:
18: 2659 1K 18: 2678
19: a 1K 19:
s 20: 1899 s 20: 2146
811 21: a 21: a
780 | 2z 811 780 | 22 1048
2458 23: a 23: a
24: 256 24: as7
520 | 25. a 520 454 25: 8
26: 59 357 26: 83
268 —| 256 27 a8 268 —| 27: 8
168 - 2g: 18 28: 12
214 g 10 i 29: o 29: 8
5*|\|\|TT|‘|H|‘||\|u|u|\|uu|| 38: a B*\llwllwlw‘lwll‘||||\||\|\\|\||\|I 38: 1
[E] 10 15 20 25 30 35 S 9, [E] 10 15 20 35 SEY L
32: L 3z: a
33 a 33: a
34: a 34: a
35 a 35 a
26: a 36: 8

Figure 17: Minimum Hamming distances: A histogram of the minimum Hamming
distance between all markers in a set, considering rotation and mirroring. (Upper
Left) Histogram if all legal 1023 sub-ID’s are used. (Upper Right) Histogram if 1002
recommended sub-ID’s (all 0-1023 except 682 and the 22 sub-ID’s listed in Table
3 (Lower Left) Histogram using set of first sequential 50 sub-ID’s. (Lower Right)
Histogram using smaller set of first 50 most recommended sub-ID’s from Table 2,
the benefit of using the recommended list 1s demonstrated by the absence of histogram
entries before n = 12.

29

sequential sub-ID’s (#0-49) and compared to a marker set containing the first 50
sub-ID’s from Table 2. In this way an application can be made very immune to
inter-marker confusion.

4.5 Minimum Pattern Size and Processing Time

The size of the marker, as seen in the image, along with the image resolution and
camera focal length sets the range of minimum and maximum distances that the
marker can be seen. Ideally this range should be as large as possible, and thus the
marker system should function with as small as possible of a minimum marker size
requirement in pixels.

ARTag’s pattern is 10x10 units and most of the internal digital bits must be
sampled for a pattern to be detected, setting the theoretical lower limit on the ARTag
marker size. The first released revision of ARTag (Rev 1) has an internal minimum
size of 13x13 pixels for the quad detection for each resolution level. Thus we would
expect a minimum width of 13 pixels when using the full resolution mode, and 26
pixels using the half resolution mode, very close to what was found.

ARToolkit’s minimum size is less straightforward to calculate, the border needs to
be detected and the inside pattern must correlate to a value higher than a user selected
confidence factor threshold and higher than the correlation with the wrong pattern.
ARToolkit samples the interior pattern of quadrilaterals with a default resolution of
16x16 but a library of simple large shapes could be differentiated from one another
with smaller than this. Perhaps this explains the recent markers being used by Dr.
Billinghurst, a founder of ARToolkit, and colleagues in their recent works where the
internal patterns were 3x3 cells of black and white squares [11]. Zhang [17] reports a
minimum width of 14 pixels required for detection using ARToolkit, which correlates
with our experiments of when the detection rate dropped below 75%.

An experiment was performed with ARTag and ARToolkit measuring their detec-
tion rate as a function of pattern size (in pixels). Detection Rate is the probability
of a marker being detected, and is 1 minus the false negative rate.

The minimum size of markers with both systems was determined experimentally
with several cameras; principally a greyscale and a colour Dragonfly IEEE-1394 cam-
era from Point Grey Research ® was used as the high quality example, and the other
cameras were lower quality USB web cams and an NTSC camera/frame-grabber com-
bination. The three USB webcams used were an Intel CS120 (320x240), an Intel Pro
(640x480) and a Telemax WC-50 (320x240). A Sharp VL-AH150U NTSC camcorder
was used in conjunction with an NTSC framegrabber set to 640x480.

The detection rate was measured as a function of marker size by moving the
camera close to and away from a panel of 9 markers. Two panels were made up, one

3http:/ /www.ptgrey.com/

30

of ARTag markers and one of ARToolkit and presented separately to each camera.
The panels were viewed at different distances with the focus adjusted to get the best
image. Ten frames were taken at each distance and the detection rate was determined
by dividing by the expected 90 markers expected to be seen.

Figs. 18,19 and show the results with the higher quality Dragonfly cameras. The
minimum ARTag marker size is about 13 pixels wide for the greyscale camera when
the full resolution mode is on, and 27 or so with the faster half resolution mode. The
results are slightly worse (larger) with the colour Dragonfly for the full resolution
mode; about 18 pixels wide. The half resolution mode gives approximately the same
cut off of 28 pixels which is not unexpected since the blurring function when sampling
to get a higher resolution removes a lot of image deterioration due to the colour filter
pattern added onto the CCD pixels. The ARTag results in Fig. 18 are quite good
both for the reason of agreeing well with the theoretical prediction and that the
failure happens abruptly, the region of sporadic detection is over a narrow range of
marker widths. In other words, ARTag provides good detection up to its limits,
the combination of the variable scale processing, forgiving edge segment heuristics
in forming quads, and the error correction allow detection to be 100% (or near to
it) with a good focused camera. The ARTag experiments were repeated under lower
light conditions but the results were very similar and not included.

For ARToolkit, this experiment was performed using both the pattern files pro-
vided in the ARToolkit download package (referred to as un-optimized patterns),
and by pattern files made by the mk_patt program that uses the markers as seen by
that camera (referred to as optimized patterns). The mk_patt program is used to
capture 12 correlation images for each marker as seen through the camera that will
be later used by ARToolkit to correlate with in the detection procedure. Fig. 19
and Fig. 20 show the results for the greyscale and colour models of the Dragonfly
camera, with a plot for both the optimized pattern files (sampled using the same
camera) and the un-optimized (default pattern files from the ARToolkit download).
Three plots are shown for each, for three different c.f. thresholds for ARToolkit. At
lower c.f. threshold settings, more markers are detected giving a higher detection
rate (lower false negative rate). It should be noted that the detected markers were
not checked for false detections and likely false detections and inter-marker confusion
events happened in this test.

Comparing these results between ARTag and ARToolkit one can see a more pre-
dictable performance with ARTag, full detection occurs until the threshold is reached
for the algorithm and there is a sharp drop in detection rate. ARToolkit, on the other
hand, has a more chaotic and jittery detection rate which drops off at a faster rate.
One can see an improved performance using the pattern files optimized for that cam-
era, since ARToolkit recognizes by correlation, it helps to have views of the pattern
as seen through that camera with the same lighting. This reliance on camera and

31

- T3

P=1:

Detection Rate

ARTag Detection Rate
with Greyscale PGR Dragonfly 640x480

Full
Resolution |
s | Half
[l Resolution
Mode

TS

P=1: e

Detection Rate

ARTag Detection Rate
with Colour PGR Dragonfly 640x480

Full
Resolution
Mode | Half
| Resolution
Mode

ek

1 t 1 t it t T t 1 t
) ia i3 28 25 28 35 <18 43 1)

Marker width (pixels)

t 1 t 1 t T t
ie i3 28 23 38 35 48

Marker width (pixels)

43

Figure 18: ARTag detection rate (1-false-negative-rate) with two versions of 640x480
Point Grey Dragonfly digital video cameras. The left shows the results with a greyscale
dragonfly (no bayer pattern colour filters) and the right shows the results with the
colour version of the same camera. Detection rate is plotted as a function of marker
width and is shown for two setting of ARTag; in the slower full resolution detection
mode, and in the faster half resolution mode.

ARToolkit {(non-optimized patterns) Detection Rate
with GreyscalePGR Dragonfly 640x480

ARToolkit (optimized patterns) Detection Rate

with Greyscale PGR Dragonfly 640x480

i -~ . -
- e.f, >=04 i
of>=04 -~ ot 5 i/
Pt
=y
i of. >= 0.6 o3 I el == 06
or &
s g
/‘,.l Booa c.f. 08
(ef.>=08 = |I|'
.- I
| !||I
o L] 10 lll ?Ill L] an as “n -Il!l !|II| £ 1] 6s T ?I!l Hln lll!i badis o L] 10 ?Ill L] an as “n -Il!l !|II| £ 1] 6s T ?I!l Hln lll!i

a8

Marker widih Ceinelsd

Marker widih Ceinelsd

Figure 19: ARToolkit detection rate (1-false-negative-rate) using the greyscale IEEE-
1394 Dragonfly video camera. Using the default (un-optimized) pattern files are shown
on the left, and captured with this camera (optimized) pattern files shown on the right.
The marker detection rate is shown as a function of the confidence value threshold.

32

I ARToolkit (non-optimized patterns) Detection Rate I ARToolkit (optimized patterns) Detection Rate
| with Colour PGR Dragonfly 640x480 | with Colour PGR Dragonfly 640x480

TR
-~ 1 o

S U"".J' A _‘_",J,- o . /,
Be.Ts I"«'II " o3 =5 .f'}r
5 cf.>=056 2 cel.>=08

Marker widih Ceinelsd Farker widin feinelsd

Figure 20: ARToolkit detection rate (1-false-negative-rate) using the colour IEEE-
1394 Dragonfly video camera. Using the default (un-optimized) pattern files are shown
on the left, and captured with this camera (optimized) pattern files shown on the right.
The marker detection rate is shown as a function of the confidence value threshold.

lighting makes ARToolkit less robust and platform independent than ARTag.

These experiments were repeated with the four other lower quality cameras and
their results are shown below.

The full resolution mode detection rate for ARTag fell below 75% at about a
width of 17 pixels, or about 28 pixels for the half resolution mode, in the three USB
webcams. This is very similar to the Colour Dragonfly, perhaps because of both
being colour imagers. Both the Colour Dragonfly and USB webcams use a Bayer (or
similar) pattern of filters over the pixels on the imaging device.

The performance with the NTSC camcorder is interesting in that the full resolu-
tion mode does not work any better than the half, which could be due to horizontal
resampling in the frame grabbing process. However this author believes the greatest
cause is is due to the edge enhancement performed in the camera to provide a sharper
looking image. This light and dark fringe (Fig. 25) is caused by some sort of differen-
tiation edge enhancement effect not found in any of the other cameras. This causes
a type of inter-marker confusion, here markers 13 and 1037 are reported for the same
marker (Fig. 25 right), the white-to-bright fringe is solid enough to be detected as a
quadrilateral contour just outside the proper contour. Since the sub-ID and interior
pattern is the same with 1037 and 13, and 1036 and 12 (13 + 1024 = 1037 as does
12 + 1024 = 1036) and the quad edges are close enough to both correctly decode the
interior, two marker ID’s get reported for the same marker.

An additional experiment was performed to attempt to address the more unstable
results with ARToolkit using the four lower quality cameras; the three USB webcams
and the NTSC camera/framegrabber. The confidence factor was measured as a func-
tion of marker size for four different ARToolkit patterns, this time using the default
pattern files provided with the ARToolkit download. Fig. 26 below shows the results,

33

Detection Rate

Detection Rate

@

@

- TS H

.58

.23+

ARTag Detection Rate
with Intel 3120 320x240 USB Webcam

Full
Resolution
Mode

Half
| Resolution
Mode

i8 i3 28 23 38 33 48 43 b1 33

Marker width {(pixels)

Detection Rate

@

@

- TS H

.58

.23+

ARToolkit {optimized patterns) Detection Rate
with Intel C$120 320x240 USB Webcam

[cf>==038

1 t 1 t 1 t 1
5 18 15 28 25 38 35 48 43 58 53

Marker width {(pixels)

Figure 21: ARTag and ARToolkit detection rate (1-false-negative-rate) using the Intel
CS120 USB Webcam video camera (3201240). Detection rate is plotted as a function
of marker width and is shown for two setting of ARTag; in the slower full resolution
detection mode, and in the faster half resolution The optimized pattern files were
captured for the ARToolkit test, and the marker detection rate is shown as a function
of the confidence value threshold.

@

@

T

.98 -

.25

ARTag Detection Rate
with Intel Pro 640x480 USB Webcam

Full
Resolution
Mode

Half
| Resolution
Mode

Marker width (pixels)

Detection Rate

@

@

T

.98 -

.25

ARToolkit (non-optimized patterns) Detection Rate
with Intel Pro 640x480 USB Webcam

T T T T T T T T T T T
5 i8 i5 28 25 38 35 <48 45 58 55

Marker width (pixels)

Figure 22: ARTag and ARToolkit detection rate (1-false-negative-rate) using the Intel
Pro USB Webcam video camera (640x480). Detection rate is plotted as a function
of marker width and is shown for two setting of ARTag; in the slower full resolution
detection mode, and in the faster half resolution The optimized pattern files from the
Intel CS120 was used for the ARToolkit test, and the marker detection rate is shown
as a function of the confidence value threshold.

Detection Rate

Detection Rate

@

@

- TS H

.58

.23+

ARTag Detection Rate
with Telemax 320x240 USB Webcam

Full
Resolution
Mode Half
Resolution

Mode

Detection Rate

@

@

- TS H

.58

.23+

ARToolkit (non-optimized patterns) Detection Rate
with Telemax 320x240 USB Webcam

h/cft>=08

33 48 43 b1 33

Marker width {(pixels)

33 48 43 b1 33

Marker width {(pixels)

Figure 23: ARTag and ARToolkit detection rate (1-false-negative-rate) using the Tele-
maz WC-50 USB Webcam video camera (3201240). Detection rate is plotted as a
function of marker width and is shown for two setting of ARTag; in the slower full
resolution detection mode, and in the faster half resolution The optimized pattern files
from the Intel CS120 was used for the ARToolkit test, and the marker detection rate
s shown as a function of the confidence value threshold.

@

@

T

.98 -

.25

ARTag Detection Rate

1 with NTSC Sharp Camcorder (640x480 framegrabber)

Full } Half
Resolution Resolution
Mode Mode

Detection Rate

@

@

T

.98 -

.25

ARToolkit (non-optimized patterns) Detection Rate
with NTSC Sharp Camcorder (640x480 framegrabber)

Marker width (pixels)

Marker width (pixels)

Figure 24: ARTag and ARToolkit detection rate (1-false-negative-rate) using the Intel
CS120 USB Webcam video camera. Detection rate is plotted as a function of marker
width and is shown for two setting of ARTag; in the slower full resolution detection
mode, and in the faster half resolution The optimized pattern files from the Intel
CS120 was used for the ARToolkit test, and the marker detection rate is shown as a
function of the confidence value threshold.

35

SRl ;
| 13 'W 1656
A) wie Y| = |

-
b
WorNSEwhe I

[t

[

S LOWNDDW

7
a
a
T
8
4
z

d
9

WEOWEDO L
WN~I00WAN
NLENDDD=INY

e e i

3
i
3
&
7

b
MATE
[TIET

i
i
i
i

[
o

E

[

Figure 25: Edge enhancement artifacts with the NTSC camcorder. Left: an image
section of a corner, there is a fringe of brighter pizels on the lighter side of the edge,
and a fringe of darker pizels (not visible) on the darker inside edge. Middle: a zoomed
in view of the edge with the pizel neighborhood around the cursor, the neighborhood
pizel zero or near zero values show the dark fringe. Right: An effect that can occur
with this large edge enhancement, both polarities of ARTag markers are found on a
single marker. Markers 1037 and 13 are coincident as are 1036 and 12.

three of the cameras used reached a plateau in c.f. value around a width somewhere
after 30-50 pixels. In Zhang’s survey [17] experiments with multiple ARToolkit mark-
ers were performed with the markers being at least 60 pixels wide. That width is
consistent with our findings where the detection rate stayed steady near 100%.

Summarizing the minimum marker size for ARTag and ARToolkit, it was shown
that with a good quality camera the theoretical minimum width of 13 pixels can easily
be reached if the full resolution mode is set (default), and a width of about 26 pixels
is the cut-off for the half resolution mode. With poorer cameras, ARTag patterns can
be reliably detected to about a width of 25 pixels in full resolution mode to achieve
a near 100% detection rate (0% false negative rate). With ARToolkit the minimum
ranges from 30-50 pixels if a confidence factor threshold of 0.80 or more is used. Also
it was found that nearly the full range is available with ARTag, as that the detection
rate drops abruptly as opposed to the slower decline with ARToolkit.

5 Processing Time

The processing time a fiducial marker system takes is important, ARToolkit’s real
time performance is one reason for its ubiquity in AR systems. Theoretically ARTag
should be faster since it only samples 6x6 points inside each quadrilateral instead of
16x16 or 32x32 as in ARToolkit. Also the first operation performed on the extracted
binary data is a deconvolution operation with a small number of memory lookups
for the FEC’s operation. This is less computation than the 16x16 integer multipli-

36

Sharp VLH150 NTSC cmaera and
framegrabber (640 x 480)

0. |w Nakmiﬂwﬁﬁw T _, o @MEWWWFWN&"

Intel PC Pro Webcam (640 x 480)

0.50 |
20

200 0 80 100 140 200

-—-ARToolkit Marker Width (pixels)-—

Intel €$120 Webcam (320 x 480) Telemax WC50 Webcam (320 x 480)

0.88 R R e R N S 0.88 —|

100 140 200

——==ARToolkit Marker Width (pixels)—

Figure 26: ARToolkit Confidence value (c.f.) plotted as a function of marker width
in pixels for four cameras used in Table 1. The non-optimized pattern files were used
(i.e. default patterns from the ARToolkit download) The ’Hiro’, 'Kangi’, ’Samplel’
and ’Robot’ markers from Fig. 3(lower right) were used, and their results overlaid.

cation with each of the 12 sub-patterns in each loaded pattern file. A 16x16 point
(default) implementation of ARToolkit does 3072 multiplications for correlating and
another 256 multiplications for normalizing the sampled image patch. If 10 patterns
were loaded, then ARToolkit must perform 33,280 integer multiplications for every
quadrilateral object found in the image. ARTag only has to perform a 36-bit divide/
deconvolution operation and perform two searches among lookup tables of 12 entries
long, all together this only has to be done once to evaluate the first step. If this
first step of FEC filtering is passed, three more deconvolution and an XOR stage are
performed. The processing time per quadrilateral in the image does not rise with the
number of markers in the library with ARTag as it does with ARToolkit. ARTag can
recognize from the library of 2002 markers as quickly as if only 10 markers are used.

A large part of the processing time is identifying the quadrilaterals, this first half
of the marker system is performed differently for ARToolkit and ARTag. ARToolkit’s
quad detection involves visiting each pixel in the image once for thresholding and
then performing connectivity on the binary image, whereas ARTag’s quad detection
strategy is to find and link edge segments and requires at minimum that two edge
masks must be passed over the image. ARToolkit only needs to visit every pixel once
in the first pass whereas ARTag needs to visit each pixel several times for the edge
operators.

Therefore, we expect a processing time that rises with linearly with both the
number of visible quadrilaterals and loaded patterns with ARToolkit, and linearly
with the number of edges with ARTag. We also expect ARToolkit to be faster when

37

a small number of patterns are loaded when a small number of markers are viewed.

ARToolkit and ARTag Processing Time on 640 x 430 Video ARToolkit and ARTag Processing Time on 640 x 480 Video

100 ; 600

TS5

\/ ARTag Full Resolution Mode

58

f i ; A e ARTag Half Resolution Mode 225 4

n 3 g / 288 |

T 7 e RToc yait |e 175+
asl A . \// I ; les loade Les
T el e i el SN o P FEC -+

Frocessing tine (ms>
Frocessing tine (ms>

ARTag Full Resolution Mode
ARTag Half Resolution Mode

T t T t T t t t T t T t T t T t T t t t T t T t
a 5 ie i5 28 25 ae 35 48 45 58 59 68 a 5 ie i5 28 25 ae 35 48 45 58 59 68

Mum. of Markers Visible Mum. of Markers Visible

Figure 27: ARTag and ARToolkit processing time. Measured with a 6402480 image
as a function of number of visible markers. ARTag’s processing time is shown for
both the full and half resolution settings. ARToolkit processing time depends on the
number of patterns loaded into memory, the left plot shows when 1, 30, 100, 200 or
500 patterns are loaded, the right plot shows when 500, 1000, or 2002 patterns are
loaded.

The time in milliseconds was measured before and after the marker detection
function was called, the results are shown in Fig. 27 for both ARToolkit and ARTag
with different settings for each. With ARTag the processing time differs depending
on if it is placed in the full (default) or half resolution processing mode. With ARTag
the processing time rises with the number of markers visible. For ARToolkit the
processing time depends both on the number of markers visible and the number of
patterns loaded, as that it has to do correlation operations with each of them. These
measurements were taken on a PC running Windows 2000 with a Pentium 4 processor
running at 3.0 GHz.

ARToolkit is faster with a small number of markers loaded, it is about 3 times
faster than the full resolution mode of ARTag and with 30 markers loaded it is about
the same speed as the half resolution mode of ARTag. ARToolkit was only run in
its half resolution mode in these experiments, it is the default setting with in the
ARToolkit releases and is the mode most likely used in applications. The first few
levels of processing in ARToolkit or ARTag only need to access 1/4 the number of
pixels if run in a half resolution mode, and so a fair comparison of time would be
with the half resolution mode of ARTag.

ARToolkit is faster than the current (Rev 1) release of ARTag if small numbers of
markers are loaded. ARTag is faster when the number of patterns loaded is large. In

38

the case where 2002 markers are loaded into ARToolkit, it would take over 2000 ms
to process a frame with 100 quadrilateral shapes in it. ARToolkit is not practical to
use with large library sizes and so this slow down phenomenon may not be an issue.

6 Jitter

An important issue with augmented reality is the amount that the virtual object
shakes with respect to the real world objects. This especially reduces the quality
of the user’s experience if the camera-pattern pose is fixed and the virtual object
still appears to vibrate. The amount by which the vertices reported marker fiducial
patterns move due to noise affects this, even a sub-pixel movement on one of the
corners is enough to noticeably shift the 3D virtual object. This erroneous motion is
worse for coordinates further away from plane of the pattern.

The jitter is a function of the first part of both marker systems, locating quadrilat-
erals. Both ARTag and ARToolkit find line equations for the four sides and intersect
these to find vertices, a process resulting in sub-pixel resolution corners.

ARToolkit employs hysteresis to stabilize the 3D object. The ARToolkit marker
detection ARMarkerDetect() function compares the coordinates of a located marker
to the past history and keeps the old vertex values if the marker does not move more
than a threshold amount. This helps to hide the jitter for stationary objects, but
creates a larger jumping like motion for slow motion where the vertices move less
than this threshold distance between frames.

ARToolkit has a second marker detection function that does not use hysteresis,
called ARMarkerDetectLite() which provides access to the jitter performance of the
raw marker detection. The Revl release of ARTag does not perform any hysteresis
on located marker vertices, preferring to leave strategies to disguise marker jitter to
the discretion of the system builder applying ARTag. *

Vertex jitter was measured with both ARTookit’s ARMarkerDetectLite() function
and ARTag. Table 4 shows some jitter measurements with 6 different cameras; the
greyscale and colour TEEE-1394 Dragonfly cameras, the three USB cameras used in
Section 4.5, and the Sharp NTSC camera. The lighting was normal, bright indoor
lighting and the focus was adjusted to the sharpest position. The jitter is slightly
worse in the half resolution mode of ARTag as compared the full resolution mode,
and the full resolution mode jitter is about the same as ARToolkit for the 6 cameras.

The main information to be gleaned from Table 4 is that with medium sized

“The Rev?2 release will, however, have hysteresis in the ”drop-in” function for those converting
ARToolkit programs or keeping compatibility between the two systems to make it more compatible
with what people expect from ARToolkit. The raw marker vertex data will still be available with
another function to keep it useful for general purpose applications.

39

markers under good illumination and focus, both ARTag and ARToolkit have with
most cameras a vertex jitter with a standard deviation of 0.05 pixels or less.

The above table gives the average jitter performance, further experiments were
performed with the best quality camera, the greyscale IEEE-1394 Dragonfly camera
as to the effect of low light and bad focusing on the jitter performance. Fig. 28 shows
some jitter results as a function of marker size in pixels, full or half resolution modes,
and the focusing and illumination conditions for both marker systems.

The jitter under low light was about twice what it was under good illumination
as would be expected due to the increased effect of noise. The Dragonfly uses a
CCD imager and so suffers from increased ”dark noise” when the gain is high. The
electrical noise is roughly constant and when the light level is low, this electrical
noise is amplified. The increased noise is clearly visible looking at the video output.
With ARTag, the jitter rises with the decreasing marker width more than ARToolkit
probably due to ARTag’s use of edge detectors, differentiation magnifies random noise.

The most obvious difference between the three rows of Fig. 28 is with the de-
focused case, ARToolkit is clearly less sensitive to having the camera out of focus.
In these tests the camera was de-focused until just before the detection rate dropped
below 100%. Since there is no quantitative measure on the focus, the comparison
is perhaps not very informative, since a more robust marker detection system would
detect the markers under worse focusing conditions. Regardless, ARToolkit does not
suffer as badly from jitter as does ARTag. The reason for this is not clear, with a
blurry image the boundary edge is spread into a wider region giving a wider variation
in where the edge line is found, this would affect both systems. Small image noise has
a larger effect on edge position when the edge region is wide with a shallow intensity
gradient, this possibly explains why the half resolution mode of ARTag has lower
jitter, noise would be lower in the half scale image after the averaging operation.
When a quad is found on several scales in the same location, the quad definition from
the higher resolution scale is chosen, potentially causing the full resolution noisier
image to be used to define the quad.

The practical outcome of these jitter measurements is a threshold value for motion
to be used in with hysteresis for augmented reality to decrease the visible virtual ob-
ject shaking. This threshold could be set to 0.1 pixels for most cases, or 0.5 pixels to
cause the object not to move with a noisy but reasonably focused camera. Hysteresis
was not added to ARTag revl because it was thought best to leave it to the specific
application. ARTag rev2 will have it in the artagDetectMarker() function to make
it more "plug and play” for people used to ARToolkit’s hysteresis. In ARTag rev2,
the artagDetectMarkerLite() function will be available as the non-hysteresis version.
Currently in ARTag revl, the artagDetectMarker() does not have hysteresis imple-
mented.

40

Uertex Jitter (pixels) Vertex Jitter (pixels)

Vertex Jitter (pixels)

ARTag Jitter in Full Resolution Mode
Sharp Focus Low Light . de-Focused

i3

a.28 a.28

a.1i8 -]

Vertex Jitter {(pixels)
Vertex Jitter {(pixels)

L I - O O T = I S e R R
-]
@
1

a 58 188 iS58 288 258 388 a 58 168 iS58 288 258 388 a 58 188 i58 288 258 388

Marker Hidth (pixels) Marker Hidth (pixels) Marker Hidth {(pixels)

ARTag Jitter in Half Resolution Mode

Sharp Focus | Low Light de-Focused

=

M

=
1

8,28 4

@

-

@
1

a.i8 -

Vertex Jitter (pixels)
Vertex Jitter (pixels)

O I - - - O - T R R
-]
@
1

a 58 i8a 158 268 258 368 a 58 188 4158 288 258 3688 a 58 iea 158 268 258 368

Marker Hidth {pixels) Marker Hidth {(pixels) Marker Hidth {(pixels)

ARToolkit Jitter
Sharp Focus Low Light de-Focused

-]

M

@
1

8.28 4

-]

[

o=
1

8.10 i e ;
r\n’\ N

Vertex Jitter (pixels)
Vertex Jitter (pixels)

i e A ey RATRE "

R - T - I =T T R e
@
@
1

a 58 iea 158 268 258 368 a 58 1884158 288 258 3688 a 58 iea 158 2688 258 388

Marker Hidth (pixels) MHarker Hidth {(pixels)} Marker Hidth (pixels)

Figure 28: ARTug jitter as a function of marker size in image. Black lines represent
standard deviation of vertex coordinates, dotted lines represent mazimal deviations
from the mean. The measurements are taken in both the full (top row) and half
(bottom row) resolution modes. The measurements were taken with the markers in
focus (left) and good light, in focus with low light (middle), and with the markers
de-focused (camera focus blurry) (right).

7 Conclusions

A new marker system, called ARTag was created to improve upon the successful
ARToolkit marker system based on passive vision of 2D planar markers. ARTag uses
an edge linking method to detect the quadrilateral borders instead of the contour
of thresholded objects in ARToolkit. As a result of the edge based quadrilateral
detection, ARTag markers can still be detected in the presence of occlusion and
uncontrolled lighting, two shortcomings of ARToolkit. The interior pattern in ARTag
is a digitally encoded, error corrected ID code to replace ARToolkit’s correlation based
pattern recognition and identification step. ARTag has a library of 2002 unique ID
markers without the need to load any pattern files. ARTag manages to achieve a
lower false negative rate (higher detection rate) than ARToolkit, but has a vastly
lower false positive error rate (%0.0078) and very low inter-marker confusion rate.

With experiments using 6 different cameras it was found that at good focus set-
tings, ARTag can detect markers down to about 13 pixels wide in the full resolution
mode and 26 pixels wide in the half resolution mode. A more conservative width
specification for poor conditions and cameras is 20 and 35 pixels respectively. AR-
Toolkit’s detection rate fails more gradually with decreasing marker size and is more
difficult to characterize.

ARToolkit has benefits over ARTag in two aspects; reduced vertex jitter under
de-focusing and reduced processing time when a small number of patterns are loaded
into ARToolkit. Under normal operating conditions, the jitter of vertex position with
both ARTag and ARToolkit have a similar standard deviation of about 0.05 pixels or
less.

ARTag is available for download for evaluation and free usage in non-commercial
systems.

42

References

1]
2]
3]

[4]

[5]

[6]

[7]

8]

[9]

[10]

[11]

[12]

http://www.eia.org/ (electronics industry association website).
http://www.photomodeler.com.

2004 IEEE / ACM International Symposium on Mized and Augmented Real-
ity (ISMAR 2004), 2-5 November 2004, Arlington, VA, USA. IEEE Computer
Society, 2004.

F. Xiao C. Owen and P. Middlin. What is the best fiducial? In First IEEE
International Augmented Reality Toolkit Workshop (at ISMAR), Sep 2002.

D. Claus and Fitzgibbon. Reliable fiducial detection in natural scenes. In Pro-

ceedings of the 8th European Conference on Computer Vision, Prague, Czech
Republic, May 2004.

M. Fiala. Artag, an improved marker system based on artoolkit. In National
Research Council Publication NRC 47166/ERB-1111, 2004.

[. Poupyrev H. Kato, M. Billinghurst. ARToolkit User Manual, Version 2.33.
Human Interface Technology Lab, University of Washington, 2000.

R. Hamming. Error detecting and error correcting codes. In Bell Systems Tech-
nology Journal, volume 29, pages 147-160, Apr 1950.

H. Kato and M. Billinghurst. Marker tracking and hmd calibration for a video-
based augmented reality conferencing system. In Proc. the 2nd IEEE and ACM
International Workshop on Augmented Reality, pages 85—94, San Francisco, CA,
USA, Oct 1999.

V. Knyaz and A. Sibiryakov. The development of new coded targets for auto-
mated point identification and non-contact 3d surface measurements. In Graph-
1con, Moscow, Russia, 1998.

G. Lee, C. Nelles, M. Billinghurst, and G. Kim. Immersive authoring of tangible
augmented reality applications. In ISMAR 2004: IEEE / ACM International
Symposium on Mized and Augmented Reality, Arlington, VA, U.S.A., Nov. 2004.

S. Malik, G. Roth, and C. McDonald. Robust 2d tracking for real-time aug-
mented reality. In Proc. of Vision Interface, pages 399-406, 2002.

43

[13]

[14]

[15]

[16]

[17]

L. Naimark and E. Foxlin. Circular data matrix fiducial system and robust
image processing for a wearable vision-inertial self-tracker. In ISMAR 2002:
IEEE / ACM International Symposium on Mized and Augmented Reality, Darm-
stadt, Germany, Sept. 2002.

J. Rekimoto. Matrix: A realtime object identification and registration method
for augmented reality. In Proceedings of 3rd Asia Pacific Computer Human
Interaction. (APCHI ’98), pages 63-68, 1998.

J. Rekimoto and Y. Ayatsuka. Cybercode: Designing augmented reality environ-
ments with visual tags. In Proceedings of DARE 2000 on Designing augmented
reality environments, pages 1-10, Elsinore, Denmark, Oct 2000.

A. S. Tanenbaum. Computer networks. Prentice-Hall, Inc, Upper Saddle River,
NJ, 1988.

X. Zhang, S. Fronz, and N. Navab. Visual marker detection and decoding in ar
sytems: A comparative study. In IFEE and ACM International Symposium on
Mized and Augmented Reality (ISMAR), pages 97-106, Sep 2002.

44

| ARTag | H.D. | # | ARTag | HD. | # | ARTag | H.D. | # | ARTag | H.D.
sub-ID sub-ID sub-1D sub-I1D
ol 4B - 18] 24E] 12 |36 106 & 12 |54] 740 BEX] 12
1| s57EX] 16 [[19] 25E| 12 [[37] 202B| 12 [55] s3sE| 12
2 | 260 16 |20 26 12 [38 200 | 12 [56] 954 B| 12
3] sHEI] 14 [[21] 30 12 [39] 227 12 [[57] oHE]| 10
4] 52BH] 14 {22 3sHE| 12 40| 237 EH| 12 | 58 1 10
50 50BX] 14 23] eoBEX| 12 [[41] 245] 12 [50| 12E] 10
6| 65| 14 [[24] 64BI| 12 [[42] 252B1] 12 |60 13E] 10
71 24aB| 14 |25 2B 12 [[43] 26sB| 12 [61] 17 10
8| 307RI| 14 [[26] 73BA] 12 [[44] 27sEX| 12 [62] 20| 10
9 540X | 14 [[27] 74BA] 12 45| 30sB®I| 12 [63| 23 10
10 920B| 14 [[28] 76BEX| 12 [46| 311 BA] 12 [64| 27 10
11| 2B 12 [[20] 9oBE| 12 |47 320Bd] 12 [|[65] 28sE]| 10
2] 6 12 | 30] 102 12 [[48| 518E] 12 [66] 20B| 10
3] 7 12 [31] 148B| 12 |49 534 12 [[67] 32HT 10
14 oEX| 12 ||32] 158 B| 12 |50 604 B| 12 [[68] 35BE | 10
5] 14-] 12 [[33] 161E| 12 |51 6208 12 [69] 40 10
6] 15E] 12 [[34] 191 EH| 12 [[52| 646 B | 12 [[70] 42B&&| 10
17] 10BE] 12 [[35] 192H| 12 [[53| 673®| 12 |71 43BEH| 10

Table 2: Recommended order of creating a set of ARTag markers for an applica-
tion. Select the marker sub-ID’s in ascending from Order=0, creating a marker set
in this way will maximize the Hamming distance between any of the markers which
minimizes the chance of inter-marker confusion. The third column for each entry
lists the Hamming distance (H.D.) for the set of markers from Order = 1 up until
that entry. For example, using the first 50 markers in this table (Order = 0 - 49)
will result in a minimum Hamming distance between any two markers in the library
of 12. Likewise, taking the first 68 markers (Order = 0 - 67) will result in a mini-
mum H.D. of 10. This information is available in the artag_recommended|order] and
artag_recommended_hd|order] statically defined arrays in the ARTag library.

45

ARTag Marker
Not Recommended

Reason

ARTag Marker
Not Recommended

Reason

ARTAG | sub-ID ARTAG | sub-ID
ID ID

75,1099 75 HD=4 to sub-ID 692 || 655,1679 655 HD=4 to sub-ID 898
at 90° ccw B El .t 180°

192,1216 192 HD=4 to sub-ID 686 || 686,1710 686 HD=4 to sub-ID 192
% | Ed ot 90° cow 2 B ot 90° cw

182,1206 182 HD=4 to itself 692,1716 692 HD=4 to sub-ID 75
* mirrored at 90° cw at 90° cw

270,1294 270 HD=2 to itself 736,1760 736 HD=4 to sub-1D 574
E mirrored at 90° cw B B ot 180°

377,1401 377 HD=4 to sub-ID 933 || 791,1815 791 HD=4 to itself
B B ot 90° cow B mirrored at 90° ccw

384,1408 384 HD=4 to itself 828,1852 828 HD=4 to sub-ID 609
mirrored at 90° ccw H B mirrored at 0°

507,1531 507 HD=4 to sub-ID 966 || 898,1922 898 HD=4 to sub-ID 655
B E3 nirrored at 0° El E ot 180°

574,1598 574 HD=4 to sub-ID 736 || 927,1951 927 HD=4 to sub-ID 938
E H ot 180° B B at 90° cew

609,1633 609 HD=4 to sub-ID 828 || 933,1957 933 HD=4 to sub-ID 377
& B mirrored at 0° A B at 90° cw

643,1667 643 HD=4 to itself 938,1962 938 HD=4 to sub-ID 927
53] mirrored at 180° & B ot 00° cw

648,1672 648 HD=4 to itself 966,1990 966 HD=4 to sub-ID 507
B mirrored at 90° ccw B3 B mirrored at 0°

Table 3: ARTag markers not recommended for use due to small Hamming distances
(HD); either with the normal (non-mirrored) case, or in the special case of a marker
been seen in a mirror. Six of the markers (sub-ID’s 182, 270, 384, 643, 648, 791) are
close to their own reflections.

46

Camera | Marker ARTag ARToolkit
Width | Half Res. | Full Res.
(pixels) Mode Mode
Greyscale 55 0.04/0.09 | 0.03/0.07 | 0.02/0.04
Dragonfly 90 0.01/0.03 | 0.02/0.04 | 0.01/0.02
Colour 55 0.04/0.06 | 0.02/0.03 || 0.02/0.04
Dragonfly | 90 | 0.02/0.04 | 0.02/0.04 | 0.02/0.03
USB Intel 55 0.05/0.10 | 0.05/0.10 || 0.05/0.09

CS120 90 || 0.06/0.13 | 0.03/0.07 || 0.04/0.09
USB Intel | 55 | 0.05/0.09 | 0.05/0.10 | 0.05/0.10
Ipro 90 || 0.05/0.10 | 0.04/0.08 || 0.04/0.09
USB 55 || 0.05/0.08 | 0.03/0.07 || 0.05/0.11
Telemax 90 || 0.05/0.09 | 0.03/0.06 || 0.03/0.07
NTSC 55 | 0.02/0.03 | 0.08/0.17 | 0.06/0.12

Camcorder 90 0.05/0.11 | 0.05/0.10 || 0.02/0.04

Table 4: Vertex jitter measurements for ARTag and ARToolkit for 6 cameras. Format
is std.dev./max, for example with the CS120 at a marker width of 55 pixels, the
corners found by ARTag in half resolution mode had a standard deviation of 0.04
pixels and a maximal distance from the mean of 0.09 pixels.

47

